Synchronous replication vs asynchronous replication
Evidian SafeKit
Data loss or not on application failover?
There is a significant difference between synchronous replication vs asynchronous replication. According the choice, you may have data loss on application failover.
Synchronous replication as implemented by the SafeKit software is essential for failover of transactional applications. With synchronous replication, all committed data on the disk of the primary server are on the disk of the secondary server. With asynchronous replication, committed data on the disk of the primary server can be lost in case of failure because not copied to the secondary server. There is also an alternative solution named semi-synchronous replication, with committed data on the secondary server but not necessary on its disk.
To help you to take the right decision if you have to choose between synchronous replication vs asynchronous replication, we explain now the technical mechanisms and the impact on application failover.
Synchronous replication
With synchronous replication as implemented by SafeKit, when a disk IO is performed by the application or by the file system cache on the primary server, SafeKit waits for the IO acknowledgement from the local disk and from the secondary server, before sending the IO acknowledgement to the application or to the file system cache. This mechanism is essential for failover of transactional applications when they commit their transactions.
Asynchronous replication
With asynchronous replication as implemented by Carbonite Double Take, the IOs are placed in a queue on the primary server but the primary server does not wait for the IO acknowledgments of the secondary server. So, all data that did not have time to be copied across the network on the secondary server is lost if the primary server fails. In particular, a transactional application loses committed transactions in case of failure.
Semi-synchronous replication
With semi-synchronous replication, SafeKit always waits for the acknowledgement of the two servers before sending the acknowledgement to the application or the file system cache. But in the semi-synchronous case, the secondary sends the acknowledgement to the primary upon receipt of the IO and writes to disk after. In the synchronous case, the secondary writes the IO to disk and then sends the acknowledgement to the primary.
Conclusion
With asynchronous replication, there is data loss on failure. Even with the semi-synchronous replication, there is data loss in the special case of a simultaneous double power outage of both servers, with inability to restart on the former primary server and the requirement to re-start on the secondary server. So be very careful when choosing synchronous replication vs asynchronous replication. Always prefer a synchronous or a semi-synchronous replication for a critical application.
Video: Synchronous replication vs asynchronous replication >
Partners, the success with SafeKit
This platform agnostic solution is ideal for a partner reselling a critical application and who wants to provide a redundancy and high availability option easy to deploy to many customers.
With many references in many countries won by partners, SafeKit has proven to be the easiest solution to implement for redundancy and high availability of building management, video management, access control, SCADA software...
Step 1. Real-time replication
Server 1 (PRIM) runs the application. Clients are connected to a virtual IP address. SafeKit replicates in real time modifications made inside files through the network.
The replication is synchronous with no data loss on failure contrary to asynchronous replication.
You just have to configure the names of directories to replicate in SafeKit. There are no pre-requisites on disk organization. Directories may be located in the system disk.
Step 2. Automatic failover
When Server 1 fails, Server 2 takes over. SafeKit switches the virtual IP address and restarts the application automatically on Server 2.
The application finds the files replicated by SafeKit uptodate on Server 2. The application continues to run on Server 2 by locally modifying its files that are no longer replicated to Server 1.
The failover time is equal to the fault-detection time (30 seconds by default) plus the application start-up time.
Step 3. Automatic failback
Failback involves restarting Server 1 after fixing the problem that caused it to fail.
SafeKit automatically resynchronizes the files, updating only the files modified on Server 2 while Server 1 was halted.
Failback takes place without disturbing the application, which can continue running on Server 2.
Step 4. Back to normal
After reintegration, the files are once again in mirror mode, as in step 1. The system is back in high-availability mode, with the application running on Server 2 and SafeKit replicating file updates to Server 1.
If the administrator wishes the application to run on Server 1, he/she can execute a "swap" command either manually at an appropriate time, or automatically through configuration.
More information on power outage and network isolation in a cluster.
Why a replication of a few Tera-bytes?
Resynchronization time after a failure (step 3)
- 1 Gb/s network ≈ 3 Hours for 1 Tera-bytes.
- 10 Gb/s network ≈ 1 Hour for 1 Tera-bytes or less depending on disk write performances.
Alternative
- For a large volume of data, use external shared storage.
- More expensive, more complex.
Why a replication < 1,000,000 files?
- Resynchronization time performance after a failure (step 3).
- Time to check each file between both nodes.
Alternative
- Put the many files to replicate in a virtual hard disk / virtual machine.
- Only the files representing the virtual hard disk / virtual machine will be replicated and resynchronized in this case.
Why a failover ≤ 32 replicated VMs?
- Each VM runs in an independent mirror module.
- Maximum of 32 mirror modules running on the same cluster.
Alternative
- Use an external shared storage and another VM clustering solution.
- More expensive, more complex.
Why a LAN/VLAN network between remote sites?
- Automatic failover of the virtual IP address with 2 nodes in the same subnet.
- Good bandwidth for resynchronization (step 3) and good latency for synchronous replication (typically a round-trip of less than 2ms).
Alternative
- Use a load balancer for the virtual IP address if the 2 nodes are in 2 subnets (supported by SafeKit, especially in the cloud).
- Use backup solutions with asynchronous replication for high latency network.
Evidian SafeKit mirror cluster with real-time file replication and failover |
|
3 products in 1 More info > |
|
Very simple configuration More info > |
|
Synchronous replication More info > |
|
Fully automated failback More info > |
|
Replication of any type of data More info > |
|
File replication vs disk replication More info > |
|
File replication vs shared disk More info > |
|
Remote sites and virtual IP address More info > |
|
Quorum and split brain More info > |
|
Active/active cluster More info > |
|
Uniform high availability solution More info > |
|
RTO / RPO More info > |
|
Evidian SafeKit farm cluster with load balancing and failover |
|
No load balancer or dedicated proxy servers or special multicast Ethernet address |
|
All clustering features |
|
Remote sites and virtual IP address |
|
Uniform high availability solution |
|
Software clustering vs hardware clustering
|
|
|
|
Shared nothing vs a shared disk cluster |
|
|
|
Application High Availability vs Full Virtual Machine High Availability
|
|
|
|
High availability vs fault tolerance
|
|
|
|
Synchronous replication vs asynchronous replication
|
|
|
|
Byte-level file replication vs block-level disk replication
|
|
|
|
Heartbeat, failover and quorum to avoid 2 master nodes
|
|
|
|
Virtual IP address primary/secondary, network load balancing, failover
|
|
|
|
Network load balancing and failover |
|
Windows farm | Linux farm |
Generic Windows farm > | Generic Linux farm > |
Microsoft IIS > | - |
NGINX > | |
Apache > | |
Amazon AWS farm > | |
Microsoft Azure farm > | |
Google GCP farm > | |
Other cloud > |
Advanced clustering architectures
Several modules can be deployed on the same cluster. Thus, advanced clustering architectures can be implemented:
- the farm+mirror cluster built by deploying a farm module and a mirror module on the same cluster,
- the active/active cluster with replication built by deploying several mirror modules on 2 servers,
- the Hyper-V cluster or KVM cluster with real-time replication and failover of full virtual machines between 2 active hypervisors,
- the N-1 cluster built by deploying N mirror modules on N+1 servers.
Evidian SafeKit 8.2
All new features compared to SafeKit 7.5 described in the release notes
Packages
- Windows (with Microsoft Visual C++ Redistributable)
- Windows (without Microsoft Visual C++ Redistributable)
- Linux
- Supported OS and last fixes
One-month license key
Technical documentation
Training
Product information
New application (real-time replication and failover)
Database (real-time replication and failover)
Full VM or container real-time replication and failover
New application (network load balancing and failover)
Web (network load balancing and failover)
Cloud (network load balancing and failover)
Physical security (real-time replication and failover)
- Installation guide with Milestone XProtect Management Server (milestone.safe)
- Installation guide with Microsoft SQL Server (slqserver.safe) for Genetec
- Installation guide with Nedap (nedap.safe)
- Installation guide with Windows Hyper-V (hyperv.safe) for Bosch AMS
- Installation guide with Windows Hyper-V (hyperv.safe) for Bosch BIS
- Installation guide with Windows Hyper-V (hyperv.safe) for Bosch BVMS
- Installation guide with Windows Hyper-V (hyperv.safe) for Hanwha Vision
- Installation guide with Windows Hyper-V (hyperv.safe) for Hanwha Wisenet
Siemens (real-time replication and failover)
- Installation guide with Windows Hyper-V (hyperv.safe) for Siemens Siveillance suite
- Installation guide with Windows Hyper-V (hyperv.safe) for Siemens Desigo CC
- Installation guide with Windows Hyper-V (hyperv.safe) for Siemens SiPass
- Installation guide with Windows Hyper-V (hyperv.safe) for Siemens SIPORT
- Installation guide with Siemens Siveillance VMS (SiveillanceVMS.safe)
- Installation guide with Windows Hyper-V (hyperv.safe) for Siemens SIMATIC WinCC
- Installation guide with Windows Hyper-V (hyperv.safe) for Siemens SIMATIC PCS 7
Cloud (real-time replication and failover)
Introduction
-
- Demonstration
- Examples of redundancy and high availability solution
- Evidian SafeKit sold in many different countries with Milestone
- 2 solutions: virtual machine or application cluster
- Distinctive advantages
- More information on the web site
-
- Cluster of virtual machines
- Mirror cluster
- Farm cluster
Installation, Console, CLI
- Install and setup / pptx
- Package installation
- Nodes setup
- Upgrade
- Web console / pptx
- Configuration of the cluster
- Configuration of a new module
- Advanced usage
- Securing the web console
- Command line / pptx
- Configure the SafeKit cluster
- Configure a SafeKit module
- Control and monitor
Advanced configuration
- Mirror module / pptx
- start_prim / stop_prim scripts
- userconfig.xml
- Heartbeat (<hearbeat>)
- Virtual IP address (<vip>)
- Real-time file replication (<rfs>)
- How real-time file replication works?
- Mirror's states in action
- Farm module / pptx
- start_both / stop_both scripts
- userconfig.xml
- Farm heartbeats (<farm>)
- Virtual IP address (<vip>)
- Farm's states in action
Troubleshooting
- Troubleshooting / pptx
- Analyze yourself the logs
- Take snapshots for support
- Boot / shutdown
- Web console / Command lines
- Mirror / Farm / Checkers
- Running an application without SafeKit
Support
- Evidian support / pptx
- Get permanent license key
- Register on support.evidian.com
- Call desk