Microsoft NLB in VMware: alternative to multicast and unicast with the SafeKit software
Evidian SafeKit
Microsoft NLB multicast mode
As explained in the knowledge base of VMware on network load balancing (NLB) multicast mode configuration, you need to manually configure static ARP resolution at the switch or router for each port that connects to the cluster. Deployment of the Microsoft NLB multicast mode in an unknown network environment can prove to be a complex and strenuous task.
Microsoft NLB unicast mode
With Microsoft NLB unicast mode, you must configure the ESXi/ESX host to not send RARP packets when any of its virtual machines is powered on. That's why, Microsoft NLB is not working properly in Unicast Mode with VMware.
Alternative with Evidian SafeKit
The SafeKit virtual IP address configuration does not require any special network configuration and the network load balancing can run in any environment. An important feature when the solution must be deployed in an unknown infrastructure: unknown switches or routers, physical servers or virtual servers.
Partners, the success with SafeKit
This platform agnostic solution is ideal for a partner reselling a critical application and who wants to provide a redundancy and high availability option easy to deploy to many customers.
With many references in many countries won by partners, SafeKit has proven to be the easiest solution to implement for redundancy and high availability of building management, video management, access control, SCADA software...
Building Management Software (BMS)
Video Management Software (VMS)
Electronic Access Control Software (EACS)
SCADA Software (Industry)
Virtual IP address in a farm cluster
On the previous figure, the application is running on the 3 servers (3 is an example, it can be 2 or more). Users are connected to a virtual IP address.
The virtual IP address is configured locally on each server in the farm cluster.
The input traffic to the virtual IP address is received by all the servers and split among them by a network filter inside each server's kernel.
SafeKit detects hardware and software failures, reconfigures network filters in the event of a failure, and offers configurable application checkers and recovery scripts.
Load balancing in a network filter
The network load balancing algorithm inside the network filter is based on the identity of the client packets (client IP address, client TCP port). Depending on the identity of the client packet input, only one filter in a server accepts the packet; the other filters in other servers reject it.
Once a packet is accepted by the filter on a server, only the CPU and memory of this server are used by the application that responds to the request of the client. The output messages are sent directly from the application server to the client.
If a server fails, the SafeKit membership protocol reconfigures the filters in the network load balancing cluster to re-balance the traffic on the remaining available servers.
Stateful or stateless applications
With a stateful application, there is session affinity. The same client must be connected to the same server on multiple TCP sessions to retrieve its context on the server. In this case, the SafeKit load balancing rule is configured on the client IP address. Thus, the same client is always connected to the same server on multiple TCP sessions. And different clients are distributed across different servers in the farm.
With a stateless application, there is no session affinity. The same client can be connected to different servers in the farm on multiple TCP sessions. There is no context stored locally on a server from one session to another. In this case, the SafeKit load balancing rule is configured on the TCP client session identity. This configuration is the one which is the best for distributing sessions between servers, but it requires a TCP service without session affinity.
Evidian SafeKit mirror cluster with real-time file replication and failover |
|
3 products in 1 More info > |
|
Very simple configuration More info > |
|
Synchronous replication More info > |
|
Fully automated failback More info > |
|
Replication of any type of data More info > |
|
File replication vs disk replication More info > |
|
File replication vs shared disk More info > |
|
Remote sites and virtual IP address More info > |
|
Quorum and split brain More info > |
|
Active/active cluster More info > |
|
Uniform high availability solution More info > |
|
RTO / RPO More info > |
|
Evidian SafeKit farm cluster with load balancing and failover |
|
No load balancer or dedicated proxy servers or special multicast Ethernet address |
|
All clustering features |
|
Remote sites and virtual IP address |
|
Uniform high availability solution |
|
Software clustering vs hardware clustering
|
|
|
|
Shared nothing vs a shared disk cluster |
|
|
|
Application High Availability vs Full Virtual Machine High Availability
|
|
|
|
High availability vs fault tolerance
|
|
|
|
Synchronous replication vs asynchronous replication
|
|
|
|
Byte-level file replication vs block-level disk replication
|
|
|
|
Heartbeat, failover and quorum to avoid 2 master nodes
|
|
|
|
Virtual IP address primary/secondary, network load balancing, failover
|
|
|
|
Network load balancing and failover |
|
Windows farm | Linux farm |
Generic Windows farm > | Generic Linux farm > |
Microsoft IIS > | - |
NGINX > | |
Apache > | |
Amazon AWS farm > | |
Microsoft Azure farm > | |
Google GCP farm > | |
Other cloud > |
Advanced clustering architectures
Several modules can be deployed on the same cluster. Thus, advanced clustering architectures can be implemented:
- the farm+mirror cluster built by deploying a farm module and a mirror module on the same cluster,
- the active/active cluster with replication built by deploying several mirror modules on 2 servers,
- the Hyper-V cluster or KVM cluster with real-time replication and failover of full virtual machines between 2 active hypervisors,
- the N-1 cluster built by deploying N mirror modules on N+1 servers.
User's Guide
Application Modules
Release Notes
Presales documentation
Introduction
-
- Features
- Architectures
- Distinctive advantages
-
- Hardware vs software cluster
- Synchronous vs asynchronous replication
- File vs disk replication
- High availability vs fault tolerance
- Hardware vs software load balancing
- Virtual machine vs application HA
Installation, Console, CLI
- Install and setup / pptx
- Package installation
- Nodes setup
- Cluster configuration
- Upgrade
- Web console / pptx
- Cluster configuration
- Configuration tab
- Control tab
- Monitor tab
- Advanced Configuration tab
- Command line / pptx
- Silent installation
- Cluster administration
- Module administration
- Command line interface
Advanced configuration
- Mirror module / pptx
- userconfig.xml + restart scripts
- Heartbeat (<hearbeat>)
- Virtual IP address (<vip>)
- Real-time file replication (<rfs>)
- Farm module / pptx
- userconfig.xml + restart scripts
- Farm configuration (<farm>)
- Virtual IP address (<vip>)
- Checkers / pptx
- Failover machine (<failover>)
- Process monitoring (<errd>)
- Network and duplicate IP checkers
- Custom checker (<custom>)
- Split brain checker (<splitbrain>)
- TCP, ping, module checkers
Support
- Support tools / pptx
- Analyze snapshots
- Evidian support / pptx
- Get permanent license key
- Register on support.evidian.com
- Call desk