

Evidian

SafeKit User's Guide

High Availability Software

for Critical Applications

39 A2 38MC 05 3

Overview

Subject

This document covers all the phases of the SafeKit implementation:

architecture, installation, tests, administration & troubleshooting,

support, and command line interface.

Intended

Readers

Architectures Technical overview

Installation Installation

Console
The SafeKit web console

Securing the SafeKit web service

Advanced

configuration

Cluster.xml for the SafeKit cluster

configuration

Userconfig.xml for a module configuration

Scripts for a module configuration

Examples of module configurations

Administration

Mirror module administration

Farm module administration

Command line interface

Advanced administration

Support

Tests

Troubleshooting

Access to Evidian support

Log Messages Index

Other
Table of Contents

Third-Party Software

Release SafeKit 8.2

Supported OS Windows and Linux; for a detailed list of supported OS, see here

Web Sites
Evidian marketing site: http://www.evidian.com/safekit

Evidian support site: https://support.evidian.com/safekit

Ref 39 A2 38MC 05

If you have any comments or questions related to this documentation, please contact us at
https://www.evidian.com/company/contact-evidian/

Copyright © Evidian, 2025
The trademarks mentioned in this document are the propriety of their respective owners.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical or otherwise without the prior written permission of the publisher.

http://support.evidian.com/solutions/downloads/safekit/version_8.2/documentation/82softwarereleasebulletin.htm
http://www.evidian.com/safekit
https://support.evidian.com/safekit
https://www.evidian.com/company/contact-evidian/

SafeKit User's Guide

4 39 A2 38MC 05

Evidian disclaims the implied warranties of merchantability and fitness for a particular purpose and makes no
express warranties except as may be stated in its written agreement with and for its customer. In no event is
Evidian liable to anyone for any indirect, special, or consequential damages.

The information and specifications in this document are subject to change without notice. Consult your Evidian
Marketing Representative for product or service availability.

39 A2 38MC 05 5

Table of Contents

SafeKit User's Guide ... 1

High Availability Software for Critical Applications ... 1

Overview .. 3

Table of Contents ... 5

1. Technical overview ... 17

1.1 Generalities, solutions, architectures ... 17

1.1.1 Introduction to SafeKit ... 17

1.1.2 SafeKit solutions ... 17

1.1.3 SafeKit architectures .. 18

1.1.4 SafeKit cluster definition... 18

1.1.5 SafeKit module definition .. 19

1.1.6 SafeKit limitations ... 19

1.2 The SafeKit mirror cluster .. 20

1.2.1 Real time file replication and application failover ... 20

1.2.2 Step 1. Normal operation ... 21

1.2.3 Step 2. Failover ... 21

1.2.4 Step 3. Failback and automatic resynchronization .. 21

1.2.5 Step 4. Return to normal operation .. 22

1.2.6 Synchronous replication versus asynchronous replication ... 22

1.2.7 Behavior in case of network isolation ... 22

1.2.8 3-node replication ... 23

1.2.9 SafeKit on a single node to protect against software failures ... 23

1.3 The SafeKit farm cluster .. 24

1.3.1 Network load balancing and application failover ... 24

1.3.2 Principle of a virtual IP address with network load balancing ... 24

1.3.3 Load balancing for stateful or stateless web services .. 24

1.3.4 Chain high availability solution in a farm .. 25

1.4 Clusters running several modules ... 25

1.4.1 The SafeKit farm+mirror cluster .. 25

1.4.2 The SafeKit active/active cluster with replication ... 25

1.4.3 The SafeKit N-1 cluster .. 26

1.5 The SafeKit Hyper-V or KVM cluster .. 27

1.5.1 Load balancing, replication, failover of entire virtual machines .. 27

1.6 SafeKit clusters in the cloud ... 27

1.6.1 Mirror cluster in Azure, AWS and GCP .. 27

1.6.2 Farm cluster in Azure, AWS and GCP ... 28

SafeKit User's Guide

6 39 A2 38MC 05

2. Installation ... 31

2.1 SafeKit install ... 31

2.1.1 Download the package ... 31

2.1.2 Installation directories and disk space provisioning .. 31

2.1.3 SafeKit install procedure ... 32

2.1.4 Use the SafeKit web console or command line interface.. 34

2.1.5 SafeKit license keys ... 35

2.1.6 System specific procedures and characteristics ... 36

2.2 Mirror installation recommendation ... 36

2.2.1 Hardware prerequisites .. 37

2.2.2 Network prerequisites .. 37

2.2.3 Application prerequisites .. 37

2.2.4 File replication prerequisites ... 37

2.3 Farm installation recommendation .. 37

2.3.1 Hardware prerequisites .. 37

2.3.2 Network prerequisites .. 37

2.3.3 Application prerequisites .. 38

2.4 SafeKit upgrade .. 38

2.4.1 Prepare the upgrade .. 38

2.4.2 Uninstall procedure .. 38

2.4.3 Reinstall and postinstall procedure ... 39

2.5 SafeKit full uninstall .. 41

2.5.1 Uninstall on Windows as administrator ... 41

2.5.2 Uninstall on Linux as root ... 41

2.6 SafeKit documentation .. 41

3. The SafeKit web console ... 43

3.1 Start the web console .. 43

3.1.1 Start a web browser .. 43

3.1.2 Connect to a SafeKit node .. 44

3.1.3 List of connection nodes ... 45

3.2 Configure the cluster ... 46

3.2.1 Cluster configuration wizard .. 46

3.2.2 Cluster configuration home page ... 49

3.3 Configure a module ... 50

3.3.1 Select the new module to configure ... 51

3.3.2 Module configuration wizard.. 52

3.3.3 Modules configuration home page .. 57

3.3.4 Edit the module configuration locally and then apply it ... 59

3.4 Monitor a module .. 60

3.4.1 Monitoring home page ... 60

3.4.2 Module state ... 61

 Technical overview

39 A2 38MC 05 7

3.4.3 Module control menus .. 63

3.4.4 Module details ... 66

3.4.5 Module states timeline ... 71

3.5 Snapshots or logs of module for debug and support 72

3.6 Secure access to the web console ... 73

4. Tests ... 75

4.1 Installation and tests after boot .. 75

4.1.1 Test package installation .. 75

4.1.2 Test license and version ... 76

4.1.3 Test SafeKit services and modules after boot .. 76

4.1.4 Test start of SafeKit web console ... 78

4.2 Tests of a mirror module ... 79

4.2.1 Test first start of a mirror module on 2 servers STOP (NotReady) 79

4.2.2 Test start of a mirror module on 2 servers STOP (NotReady) .. 79

4.2.3 Test stop of a mirror module on the server PRIM (Ready) ... 79

4.2.4 Test start of a mirror module on the server STOP (NotReady) .. 80

4.2.5 Test restart of a mirror module on the server PRIM (Ready) .. 80

4.2.6 Test virtual IP address of a mirror module .. 80

4.2.7 Test file replication of a mirror module ... 81

4.2.8 Test shutdown of the server PRIM (Ready) .. 82

4.2.9 Test power-off of the server PRIM (Ready) .. 83

4.2.10 Test split-brain with a mirror module ... 83

4.2.11 Continue your mirror module tests with checkers .. 84

4.3 Tests of a farm module .. 85

4.3.1 Test start of a farm module on all servers STOP (NotReady) .. 85

4.3.2 Test stop of a farm module on one server UP (Ready) .. 85

4.3.3 Test restart of a farm module on one server UP(Ready) ... 85

4.3.4 Test virtual IP address of a farm module .. 85

4.3.5 Test TCP load balancing on a virtual IP address ... 87

4.3.6 Test split-brain with a farm module ... 88

4.3.7 Test compatibility of the network with invisible MAC address (vmac_invisible)....................... 89

4.3.8 Test shutdown of a server UP (Ready) .. 90

4.3.9 Test power-off of a server UP (Ready) .. 90

4.3.10 Continue your farm module tests with checkers... 91

4.4 Tests of checkers common to mirror and farm .. 91

4.4.1 Test <errd> checker with action restart or stopstart .. 91

4.4.2 Test <tcp> checker with action restart or stopstart ... 92

4.4.3 Test <tcp> checker with action wait .. 93

4.4.4 Test <interface check="on"> with action wait ... 93

SafeKit User's Guide

8 39 A2 38MC 05

4.4.5 Test <ping> checker with action wait ... 94

4.4.6 Test <module> checker with action wait .. 95

4.4.7 Test <custom> checker with action wait .. 96

4.4.8 Test <custom> checker with action restart or stopstart .. 97

5. Mirror module administration ... 101

5.1 Operating mode of a mirror module .. 101

5.2 State automaton of a mirror module (STOP, WAIT, ALONE, PRIM, SECOND -

NotReady, Transient, Ready) .. 103

5.3 First start-up of a mirror module (safekit prim command) 104

5.4 Different reintegration cases (use of bitmaps) .. 105

5.5 Start-up of a mirror module with the up-to-date data STOP (NotReady) -

WAIT (NotReady) ... 106

5.6 Degraded replication mode (ALONE (Ready) degraded) 107

5.7 Automatic or manual failover ... 108

5.8 Default primary server (automatic swap after reintegration) 110

5.9 Prim command fails: why? (safekit primforce command)......................... 111

6. Farm module administration ... 113

6.1 Operating mode of a farm module .. 113

6.2 State automaton of a farm module (STOP, WAIT, UP - NotReady, Transient,

Ready) .. 114

6.3 Start-up of a farm module ... 115

7. Troubleshooting ... 117

7.1 Connection issues with the web console ... 117

7.1.1 Browser check... 117

7.1.2 Browser state clear .. 118

7.1.3 Server check ... 118

7.2 Connection issues with the HTTPS web console ... 118

7.2.1 Check server certificates .. 119

7.2.2 Check certificates installed in SafeKit ... 120

7.2.3 Revert to HTTP configuration .. 121

7.3 How to read logs and resources of the module? .. 121

7.4 How to read the commands log of the server? .. 122

7.5 Stable module (Ready) and (Ready) .. 122

7.6 Degraded module (Ready)and / (NotReady) 122

7.7 Out of service module / (NotReady) and / (NotReady) 122

7.8 Module STOP (NotReady): start the module ... 123

7.9 Module WAIT (NotReady): repair the resource="down" 123

7.10 Module oscillating from (Ready) to (Transient) 124

 Technical overview

39 A2 38MC 05 9

7.11 Message on stop after maxloop .. 125

7.12 Module (Ready) but non-operational application 125

7.13 Mirror module ALONE (Ready) - WAIT/ STOP (NotReady) 126

7.14 Farm module UP(Ready)but problem of load balancing in a farm............... 127

7.14.1 Reported network load share are not coherent .. 127

7.14.2 virtual IP address does not respond properly .. 127

7.15 Problem with the virtual IP after failover .. 128

7.16 Problem after Boot .. 129

7.17 Analysis from snapshots of the module .. 129

7.17.1 Module configuration files ... 130

7.17.2 Module dump files ... 130

7.18 Problem with the size of SafeKit databases .. 133

7.19 Problem for retrieving the certification authority certificate from an external

PKI ... 134

7.19.1 Export CA certificate(s) from public certificates ... 134

7.20 Issue with email sending by the SafeKit notification agent 136

7.20.1 Failed to read or parse the configuration file ... 137

7.20.2 Curl errors .. 137

7.21 Still in Trouble .. 138

8. Access to Evidian support ... 139

8.1 Home page of support site ... 139

8.2 Permanent license keys ... 140

8.3 Create an account ... 141

8.4 Access to your account .. 141

8.5 Call desk to open a trouble ticket .. 142

8.5.1 Call desk operations... 142

8.5.2 Create a call ... 142

8.5.3 Attach the snapshots ... 143

8.5.4 Answers to a call and exchange with support .. 144

8.6 Download and upload area ... 145

8.6.1 Two areas of download and upload .. 145

8.6.2 Product download area ... 145

8.6.3 Private upload area .. 146

8.7 Knowledge base ... 146

9. Command line interface .. 147

9.1 Commands to control and setup SafeKit .. 147

9.1.1 safeadmin service .. 147

9.1.2 safewebserver service .. 148

9.1.3 Email notification agent .. 149

SafeKit User's Guide

10 39 A2 38MC 05

9.1.4 SNMP service .. 149

9.2 Command lines to configure and monitor the cluster 150

9.3 Command lines to control modules ... 152

9.4 Command lines to monitor modules .. 153

9.5 Command lines to configure modules .. 154

9.6 Command lines for support .. 156

9.7 Command lines during the maintenance of the module application 157

9.7.1 Module control for maintenance... 157

9.7.2 Running the application without the module .. 159

9.8 Command lines distributed across multiple SafeKit servers 159

9.9 Examples ... 161

9.9.1 Local and distributed command ... 161

9.9.2 Cluster configuration with command line .. 161

9.9.3 Module configuration with command line .. 161

9.9.4 Module snapshot with command line .. 162

10. Advanced administration and setup .. 163

10.1 SafeKit environment variables and directories .. 163

10.1.1 Global .. 163

10.1.2 Module ... 163

10.2 SafeKit services and daemons .. 165

10.2.1 SafeKit services ... 165

10.2.2 SafeKit daemons per module .. 166

10.3 Firewall settings ... 166

10.3.1 Firewall settings in Linux .. 167

10.3.2 Firewall settings in Windows ... 167

10.3.3 Other firewalls .. 168

10.4 Boot and shutdown setup in Windows.. 171

10.4.1 Automatic procedure .. 171

10.4.2 Manual procedure .. 171

10.5 Linux Secure boot settings for SafeKit kernel modules 172

10.6 Antivirus settings .. 173

10.7 Encryption of module communications ... 173

10.7.1 Configuration with the SafeKit Web console .. 174

10.7.2 Configuration with the Command Line Interface .. 174

10.7.3 Advanced configuration .. 175

10.8 SafeKit web service settings ... 176

10.8.1 Configuration files ... 176

10.8.2 Connection ports configuration .. 178

10.8.3 HTTP/HTTPS and user authentication configuration .. 178

10.8.4 SafeKit API ... 179

 Technical overview

39 A2 38MC 05 11

10.9 SafeKit email notification agent .. 179

10.9.1 SafeKit notification agent configuration .. 180

10.9.2 SMTP client credentials setup for authentication .. 181

10.9.3 Email sending test ... 181

10.9.4 SafeKit notification agent activation ... 182

10.10 SNMP monitoring .. 182

10.10.1 SNMP monitoring in Windows .. 182

10.10.2 SNMP monitoring in Linux ... 183

10.10.3 The SafeKit MIB .. 183

10.11 Commands log of the SafeKit server ... 184

10.12 SafeKit log messages in system log ... 185

11. Securing the SafeKit web service .. 187

11.1 Overview ... 187

11.1.1 Default setup .. 188

11.1.2 Predefined setups .. 188

11.2 HTTP setup .. 189

11.2.1 Default setup .. 189

11.2.2 Unsecure setup based on identical role for all .. 191

11.3 HTTPS setup .. 192

11.3.1 HTTPS setup using the SafeKit PKI .. 193

11.3.2 HTTPS setup using an external PKI .. 200

11.4 User authentication setup .. 204

11.4.1 File-based authentication setup ... 204

11.4.2 LDAP/AD authentication setup ... 207

11.4.3 OpenID authentication setup... 209

12. Cluster.xml for the SafeKit cluster configuration 213

12.1 Cluster.xml file ... 213

12.1.1 Cluster.xml example .. 213

12.1.2 Cluster.xml syntax ... 214

12.1.3 <lans>, <lan>, <node> attributes .. 214

12.2 SafeKit cluster Configuration .. 216

12.2.1 Configuration with the SafeKit web console ... 216

12.2.2 Configuration with command line ... 217

12.2.3 Configuration changes .. 217

13. Userconfig.xml for a module configuration ... 219

13.1 Macro definition - <macro> ... 220

13.1.1 <macro> example ... 220

13.1.2 <macro> syntax ... 220

13.1.3 <macro> attributes ... 220

13.2 Farm or mirror module - <service> ... 221

SafeKit User's Guide

12 39 A2 38MC 05

13.2.1 <service> example .. 221

13.2.2 <service> syntax .. 221

13.2.3 <service> attributes .. 221

13.3 Heartbeats - <heart>, <heartbeat > .. 224

13.3.1 <heart> example .. 224

13.3.2 <heart> syntax ... 224

13.3.3 <heart>, <heartbeat > attributes ... 225

13.4 Farm topology - <farm>, <lan> ... 226

13.4.1 <farm> example ... 226

13.4.2 <farm> syntax ... 226

13.4.3 <farm>, <lan> attributes... 227

13.5 Virtual IP address - <vip> ... 227

13.5.1 <vip> example in a mirror module .. 227

13.5.2 <vip> example in a farm module .. 228

13.5.3 Alternative to <vip> for servers in different networks .. 228

13.5.4 <vip> syntax .. 229

13.5.5 <vip><interface_list>, <interface>, <virtual_interface>, <real_interface>, <virtual_addr>
attributes ... 230

13.5.6 <loadbalancing_list>, <group>, <cluster>, <host> attributes .. 233

13.5.7 <vip> Load balancing description .. 235

13.6 File replication - <rfs>, <replicated> .. 236

13.6.1 <rfs> example .. 236

13.6.2 <rfs> syntax .. 237

13.6.3 <rfs>, <replicated> attributes .. 237

13.6.4 <rfs> description .. 245

13.7 Enable module scripts - <user>, <var>... 254

13.7.1 <user> example ... 254

13.7.2 <user> syntax .. 254

13.7.3 <user>, <var> attributes ... 254

13.8 Virtual hostname - <vhost>, <virtualhostname> .. 255

13.8.1 <vhost> example .. 255

13.8.2 <vhost> syntax .. 255

13.8.3 <vhost>, <virtualhostname> attributes ... 255

13.8.4 <vhost> description .. 256

13.9 Process or service monitoring - <errd>, <proc> ... 256

13.9.1 <errd> example .. 256

13.9.2 <errd> syntax .. 257

13.9.3 <errd>, <proc> attributes ... 257

13.9.4 <errd> commands .. 261

13.10 Checkers - <check> .. 263

13.10.1 <check> example ... 263

13.10.2 <check> syntax .. 263

 Technical overview

39 A2 38MC 05 13

13.10.3 <checker> description ... 264

13.11 TCP checker - <tcp> ... 267

13.11.1 <tcp> example ... 267

13.11.2 <tcp> syntax .. 267

13.11.3 <tcp> attributes ... 268

13.12 Ping checker - <ping> ... 269

13.12.1 <ping> example ... 269

13.12.2 <ping> syntax .. 270

13.12.3 <ping> attributes .. 270

13.13 Interface checker - <intf> ... 272

13.13.1 <intf> example ... 272

13.13.2 <intf> syntax ... 272

13.13.3 <intf> attributes ... 272

13.14 IP checker - <ip> ... 273

13.14.1 <ip> example ... 273

13.14.2 <ip> syntax ... 273

13.14.3 <ip> attributes ... 274

13.15 Custom checker - <custom> .. 274

13.15.1 <custom> example ... 274

13.15.2 <custom> syntax .. 275

13.15.3 <custom> attributes .. 275

13.16 Module checker - <module> .. 277

13.16.1 <module> example ... 277

13.16.2 <module> syntax .. 278

13.16.3 <module> attributes ... 278

13.17 Splitbrain checker - <splitbrain> .. 279

13.17.1 <splitbrain> example... 280

13.17.2 <splitbrain> syntax ... 280

13.17.3 <splitbrain> attributes ... 280

13.18 Failover machine - <failover> .. 281

13.18.1 <failover> example ... 281

13.18.2 <failover> syntax .. 282

13.18.3 <failover> attributes ... 282

13.18.4 <failover> description .. 283

14. Scripts for a module configuration .. 287

14.1 List of scripts ... 287

14.1.1 Start/stop scripts... 287

14.1.2 Other scripts ... 288

14.2 Variables and arguments passed to scripts ... 288

14.3 Scripts output .. 289

14.3.1 Output into script log ... 289

SafeKit User's Guide

14 39 A2 38MC 05

14.3.2 Output into module log .. 289

14.4 Scripts execution automaton .. 290

14.5 SafeKit special commands for scripts ... 291

14.5.1 Commands for Windows ... 292

14.5.2 Commands for Linux .. 292

14.5.3 Commands for Windows and Linux .. 293

15. Examples of module configurations .. 295

15.1 Mirror module example with mirror.safe ... 295

15.1.1 Cluster configuration with two networks ... 296

15.1.2 Mirror module configurations .. 296

15.1.3 Mirror Module scripts ... 299

15.2 Farm module example with farm.safe .. 301

15.2.1 Cluster configuration with three nodes ... 301

15.2.2 Farm module configurations .. 302

15.2.3 Farm module scripts .. 307

15.3 Macro and script variables example with hyperv.safe 309

15.3.1 Module configuration with macros and var .. 309

15.3.2 Module scripts with var .. 310

15.4 Process monitoring example with softerrd.safe 310

15.4.1 Module configuration with process monitoring ... 310

15.4.2 Advanced configuration of module scripts ... 312

15.5 TCP checker example .. 314

15.6 Ping checker example .. 315

15.7 Custom checker example with customchecker.safe 317

15.7.1 Module configuration with custom checker .. 317

15.7.2 Advanced configuration of module checker script ... 319

15.8 Split-brain checker example ... 320

15.9 Module checker examples .. 321

15.9.1 Example of a farm module depending on a mirror module .. 321

15.9.2 Example with leader.safe and follower.safe ... 323

15.10 Interface checker example ... 323

15.11 IP checker example ... 324

15.12 Virtual hostname example with vhost.safe ... 325

15.12.1 Module configuration with a virtual hostname ... 325

15.12.2 Module scripts with a virtual hostname ... 326

16. SafeKit cluster in the cloud ... 329

16.1 SafeKit cluster in Amazon AWS ... 329

16.1.1 Mirror cluster in AWS ... 330

16.1.2 Farm cluster in AWS .. 331

16.2 SafeKit cluster in Microsoft Azure .. 332

 Technical overview

39 A2 38MC 05 15

16.2.1 Mirror cluster in Azure .. 333

16.2.2 Farm cluster in Azure ... 335

16.3 SafeKit cluster in Google GCP ... 336

16.3.1 Mirror cluster in GCP .. 337

16.3.2 Farm cluster in GCP ... 338

17. Third-Party Software .. 341

Log Messages Index ... 345

Index .. 349

SafeKit User's Guide

16 39 A2 38MC 05

39 A2 38MC 05 17

1. Technical overview

 Section 1.1 “Generalities, solutions, architectures”

 Section 1.2 “The SafeKit mirror cluster”

 Section 1.3 “The SafeKit farm cluster”

 Section 1.4 “Clusters running several modules”

 Section 1.5 “The SafeKit Hyper-V or KVM cluster”

 Section 1.6 “SafeKit clusters in the cloud”

1.1 Generalities, solutions, architectures

1.1.1 Introduction to SafeKit

SafeKit, developed by Evidian, is a high availability software solution designed to ensure

24/7 uptime for business-critical applications. It supports both Windows and Linux

platforms and eliminates the need for shared disks, enterprise editions of databases, or

advanced technical skills, making it a cost-effective alternative to traditional clustering

solutions.

Key Features:

• Real-Time Synchronous Replication: Continuous data replication across nodes to

prevent data loss.

• Automatic Failover and Failback: Seamless switch to a secondary system during

failures and reversion once the original system is operational.

• Load Balancing: Optimizes resource use by distributing workloads across multiple

servers.

• Platform Agnostic: Compatible with physical machines, virtual machines, and public

cloud infrastructures.

Key Advantages:

• Zero Specific Skills: No specialized IT skills required for deployment.

• Zero Hardware Overhead: No need for specific hardware like shared disks or load

balancers.

• Zero Software Overhead: Works with standard editions of Windows and Linux.

Key Solutions:

• Application Level: High availability with restart scripts per application.

• Hypervisor Level: High availability without restart scripts per application.

• Container or Pod Level: High availability without restart scripts per application.

SafeKit is ideal for software publishers, resellers, and distributors looking to enhance

their products with high availability features. It also offers an OEM opportunity for

partners to integrate SafeKit into their own applications.

1.1.2 SafeKit solutions

 See here for a list of SafeKit solutions.

https://www.evidian.com/products/high-availability-software-for-application-clustering/cluster-configuration/

SafeKit User's Guide

18 39 A2 38MC 05

Application-level HA

In this type of solution, only application

data is replicated. And only the

application is restarted in case of a

failure.

Integration tasks must be implemented:

write restart scripts for the application,

define folders for replication, configure

software checkers, define a virtual IP

address.

This solution is platform-independent and

works with applications inside physical

machines, virtual machines, in the cloud.

Any hypervisor is supported (e.g.,

VMware, Hyper-V, etc.).

Virtual machine-level HA

In this type of solution, the entire virtual

machine (VM) is replicated, including the

application and OS. The complete virtual

machine is restarted in case of a failure.

The advantage is that there are no restart

scripts to write per application, and no

virtual IP address to set. If you don’t

know how an application works, this is

the simplest solution.

This solution works with Windows/Hyper-

V and Linux/KVM but not with VMware.

This is an active/active solution with

multiple virtual machines replicated and

restarted between the two nodes.

Note: Applications running in containers or pods also do not require dedicated restart

scripts. SafeKit provides generic restarts and real-time replication of persistent data for

these environments (see the list of SafeKit solutions).

1.1.3 SafeKit architectures

SafeKit offers two basic high availability clusters for Windows and Linux:

• the mirror cluster, with real-time file replication and failover, built by deploying a

mirror module on 2 servers,

• the farm cluster, with network load balancing and failover, built by deploying a farm

module on 2 servers or more.

Several modules can be deployed on the same cluster. Thus, advanced clustering

architectures can be implemented:

• the farm+mirror cluster built by deploying a farm module and a mirror module on the

same cluster,

• the active/active cluster built by deploying several mirror modules on 2 servers,

• the N-1 cluster built by deploying N mirror module on N+1 servers.

Specific clusters are also interesting to consider with SafeKit:

• the Hyper-V or KVM cluster with real-time replication and failover of entire virtual

machines between 2 active hypervisors,

• mirror or farm clusters in the Cloud.

1.1.4 SafeKit cluster definition

A SafeKit cluster is a set of servers where SafeKit is installed and running.

All servers within a given SafeKit cluster share the same cluster configuration, which

includes the list of servers and networks used. These servers communicate with each

other to maintain a global view of the configurations of the SafeKit modules. A server

cannot belong to multiple SafeKit clusters simultaneously.

https://www.evidian.com/products/high-availability-software-for-application-clustering/cluster-configuration/

 Technical overview

39 A2 38MC 05 19

Configuring the cluster is a prerequisite before the installation and configuration of

SafeKit modules. This can be done using the SafeKit web console or through online

commands.

1.1.5 SafeKit module definition

A module is a customization of SafeKit for a specific application or hypervisor. See here

for a list of modules and their quick installation guides.

Types of Modules

• Generic farm and mirror modules for new applications,

• Preconfigured application modules for databases, web servers…,

• Hypervisors modules (hyperv.safe, kvm.safe) for real-time replication and restart of

entire virtual machines.

Module Contents

In practice, a module is a “.safe” file (zip type) that includes:

• The configuration file userconfig.xml, which contains:

o The virtual IP address (not necessary for a hypervisor module),

o File directories to replicate in real time (for a mirror module),

o Network load balancing criteria (for a farm module),

o Configuration of software and hardware failures detectors,

• The scripts to start and stop an application or a virtual machine.

Deployment Steps

Once a module is configured and tested, deployment requires no specific IT skills:

• Install the application or the hypervisor on 2 standard servers,

• Install the SafeKit software on both servers,

• Install the module on both servers.

Configuring, deploying, and monitoring modules can be done using the SafeKit web

console or through online commands.

1.1.6 SafeKit limitations

Typical usage with SafeKit

Replication of a

few Tera-bytes

Replication < 1

million files

Replication <= 32

virtual machines

1 or 10 G/s LAN or

extended LAN

Limitation

https://www.evidian.com/products/high-availability-software-for-application-clustering/safekit-quick-installation-guides/
https://www.evidian.com/products/high-availability-software-for-application-clustering/safekit-quick-installation-guides/

SafeKit User's Guide

20 39 A2 38MC 05

Resynchronization

after a failure

takes too long.

On a 1 Gb/s

network, 3 Hours

for 1 Tera-bytes.

On a 10 Gb/s

network, 1 hour or

less for 1 Tera-

bytes (depends on

write disk IO

performances).

Resynchronization

after a failure

takes too long.

Time to check

each file between

both nodes.

In full virtual

machine

replication mode,

and with one

virtual machine in

a mirror module,

the limit is 32

modules per

cluster.

Failover of the

virtual IP address

is built-in when in

the same subnet.

A LAN provides

adequate

bandwidth for

resynchronization.

A LAN provides

adequate latency

(typically a round-

trip of less than

2ms) for

synchronous

replication.

Alternative

Use shared

storage.

Put files in a

virtual hard disk

replicated by

SafeKit.

Use another HA

solution with

shared storage.

Use backup

solutions with

asynchronous

replication.

1.2 The SafeKit mirror cluster

1.2.1 Real time file replication and application failover

The mirror cluster is an active-passive high-availability solution, built by deploying a

mirror module within a two-node cluster. The application runs on a primary server and is

restarted automatically on a secondary server if the primary server fails.

With its real-time file replication function, this architecture is particularly suited to

providing high availability for back-end applications with critical data to protect against

failure.

Microsoft SQL Server, PostgreSQL, MariaDB, Oracle, Milestone, Nedap, Docker, Podman,

Hyper-V, and KVM solutions are examples of mirror modules. You can create your own

mirror module for your application based on the generic mirror.safe module. See here for

a list of modules.

Note that Hyper-V and KVM mirror modules replicate entire virtual machines, including

applications and operating systems. They do not require a virtual IP, as the VM restart

handles the failover of the VM physical IP address.

The mirror cluster works as follows.

https://www.evidian.com/products/high-availability-software-for-application-clustering/how-a-virtual-ip-address-works/
https://www.evidian.com/products/high-availability-software-for-application-clustering/how-a-virtual-ip-address-works/
https://www.evidian.com/products/high-availability-software-for-application-clustering/safekit-quick-installation-guides/
https://www.evidian.com/products/high-availability-software-for-application-clustering/safekit-quick-installation-guides/

 Technical overview

39 A2 38MC 05 21

1.2.2 Step 1. Normal operation

Server 1 (PRIM) runs the application.

SafeKit replicates files opened by the application. Only changes made by the application

in the files are replicated in real time across the network, thus limiting traffic.

For replication, only names of file directories to replicate are configured in SafeKit. There

are no pre-requisites on disk organization for the two servers. Directories to replicate

may be located in the system disk.

1.2.3 Step 2. Failover

When Server 1 fails, Server 2 takes over. SafeKit switches the virtual IP address and

restarts the application automatically on Server 2. The application finds the files

replicated by SafeKit up-to-date on Server 2, thanks to the synchronous replication

between Server 1 and Server 2. The application continues to run on Server 2 by locally

modifying its files that are no longer replicated to Server 1.

The switch-over time is equal to the fault-detection time (set to 30 seconds by default)

plus the application start-up time. Unlike disk replication solutions, there is no delay for

remounting file systems and running recovery procedures.

1.2.4 Step 3. Failback and automatic resynchronization

Failback involves restarting Server 1 after fixing the problem that caused it to fail.

SafeKit automatically resynchronizes the files, updating only the files modified on Server

2 while Server 1 was halted.

This automatic reintegration takes place without stopping the application, which can

continue running on Server 2. This is a major feature that differentiates SafeKit from

other solutions, which require manual operations to reintegrate Server 1 in the cluster.

SafeKit User's Guide

22 39 A2 38MC 05

1.2.5 Step 4. Return to normal operation

After reintegration, the files are once again in mirror mode, as in step 1. The system is

back in high-availability mode, with the application running on Server 2 and SafeKit

replicating file updates to Server 1.

If administrators want the application to run on Server 1, they can execute a ‘Stop/Start’

command on the PRIM server either through the console at the appropriate time or

automatically by configuring a default primary server.

1.2.6 Synchronous replication versus asynchronous replication

There is a significant difference between synchronous replication, as offered by the

SafeKit mirror solution, and asynchronous replication traditionally offered by other file

replication solutions.

With synchronous replication, when a disk IO is performed by the application on the

primary server inside a replicated file, SafeKit waits for the IO acknowledgement from

the local disk and from the secondary server, before sending the IO acknowledgement to

the application. This mechanism is essential for recovery of transactional applications.

The latency of a LAN (typically a round-trip of less than 2ms) between the servers is

required to implement synchronous data replication, possibly with an extended LAN in

two geographically remote computer rooms.

With asynchronous replication implemented by other solutions, the IOs are placed in a

log on the primary server but the primary server does not wait for the IO

acknowledgments of the secondary server. Thus, all data that has not been copied over

the network to the second server is lost in the event of a failure of the first server.

In particular, a transactional application may lose committed data in the event of a

failure. Asynchronous replication can be used for data replication over a low-speed WAN

to back up data remotely, but it is not suitable for high availability with automatic

failover.

SafeKit provides a semi-synchronous solution, implementing the asynchrony not on the

primary server but on the secondary one. In this solution, SafeKit always waits for the

acknowledgement of the two servers before sending the acknowledgement to the

application. But on the secondary, there are 2 options asynchronous or synchronous. In

the asynchronous case, the secondary sends the acknowledgement to the primary upon

receipt of the IO and writes to disk after. In the synchronous case, the secondary writes

the IO to disk and then sends the acknowledgement to the primary. The synchronous

mode is required if we consider a simultaneous double power outage of two servers, with

inability to restart the former primary server and requirement to re-start on the

secondary.

1.2.7 Behavior in case of network isolation

A heartbeat is a mechanism for synchronizing two servers and detecting failures by

exchanging data over a shared network. If one server loses all heartbeats, it assumes the

other is down and runs the application ALONE.

 Technical overview

39 A2 38MC 05 23

SafeKit supports multiple heartbeats across shared networks. A dedicated network with a

second heartbeat can prevent network isolation and also be used as the replication

network.

Network Isolation:

• Upon losing all heartbeats, both servers transition to the ALONE state, running the

application independently.

• After the isolation, one server stops and resynchronizes data from the other server.

• The cluster returns to PRIM-SECOND state.

Splitbrain Checker:

• Uses a witness IP (usually a router) to avoid double execution during isolation.

• Only the server with witness access goes ALONE, the other waits.

• After isolation, the WAIT server resynchronizes and becomes SECOND.

1.2.8 3-node replication

SafeKit only supports replication between two nodes. However, it is possible to

implement 3-node replication by combining SafeKit with a backup solution.

An application is made highly available between 2 nodes thanks to SafeKit with its

synchronous real-time replication (no data loss) and automatic failover. Additionally, a

backup solution is implemented for asynchronous replication to a third node in a disaster

recovery site. Since there is data loss with an asynchronous backup solution, the failover

to the third node is manual and decided by an administrator.

Note that the real-time replication of SafeKit does not eliminate the need for a backup

solution. For example, a ransomware attack encrypting replicated data on the primary

server will also encrypt data on the secondary server in real-time with SafeKit. Only a

backup solution with a retention policy can resolve a ransomware attack. The

administrator must restore the backup from before the ransomware attack.

1.2.9 SafeKit on a single node to protect against software failures

You can configure a module in "light" mode, which corresponds to a module running on a

single node without synchronizing with other nodes (unlike mirror or farm modules). A

light module includes the start and stop of an application, as well as SafeKit checkers

that detect software errors and perform automatic restarts on a single node.

The light module interfaces with the SafeKit console, allowing an administrator to view

the status of the application module and manually trigger application restarts using a

button-click interface.

There is no need to define a virtual IP address or replicated directories in a light module.

Note that this can also serve as a first step before transitioning to a mirror module or a

farm module.

SafeKit User's Guide

24 39 A2 38MC 05

1.3 The SafeKit farm cluster

1.3.1 Network load balancing and application failover

The farm cluster is an active-active high-availability solution, built by deploying a farm

module within a cluster of two or more nodes. The farm cluster provides both network

load balancing, through transparent distribution of network traffic, and software and

hardware failover. This architecture offers a simple solution to support the increase in

system load.

The same application runs on each server, and the load is balanced by the distribution of

network activity on the different servers of the farm.

Farm clusters are suited to front-end applications like web services.

Apache, Microsoft IIS, NGINX solutions are examples of farm modules. You can write

your own farm module for your application, based on the generic farm.safe module. See

here for a list of modules.

1.3.2 Principle of a virtual IP address with network load balancing

The virtual IP address is configured locally on each server in the farm. Input traffic for

this address is distributed among all servers by a filter within each server’s kernel.

The load balancing algorithm inside the filter is based on the identity of the client packets

(client IP address, client TCP port). Depending on the identity of the client packet, only

one filter on a server accepts the packet. Once a packet is accepted by the filter on a

server, only the CPU and memory of that server are used by the application responding

to the client’s request. The output messages are sent directly from the application server

to the client.

If a server fails, the SafeKit heartbeat protocol in a farm reconfigures the filters to re-

balance the traffic among the remaining available servers.

1.3.3 Load balancing for stateful or stateless web services

With a stateful server, session affinity is required. The same client must connect to the

same server across multiple TCP sessions to retrieve its context. In this scenario, the

SafeKit load balancing rule is configured on the client IP address. This ensures that the

same client always connects to the same server for multiple TCP sessions, while different

clients are distributed across various servers in the farm. This configuration is used when

session affinity is required.

With a stateless server, there is no session affinity. The same client can connect to

different servers in the farm across multiple TCP sessions, as no context is stored locally

on a server from one session to another. In this case, the SafeKit load balancing rule is

configured on the TCP client session identity. This configuration is optimal for distributing

sessions between servers but requires a TCP service without session affinity.

https://www.evidian.com/products/high-availability-software-for-application-clustering/safekit-quick-installation-guides/
https://www.evidian.com/products/high-availability-software-for-application-clustering/safekit-quick-installation-guides/

 Technical overview

39 A2 38MC 05 25

1.3.4 Chain high availability solution in a farm

What is a chain HA solution (also known as a cascading HA solution)?

• Multiple servers are linked in a sequence: If one server fails, the next one in the chain

takes over.

• Priority-based management: A single server, the one with the highest priority in the

chain and which is available, manages all requests from clients.

• Failover process: If the server with the highest priority fails, the next available server

with the highest priority takes over.

• Reintegration: When a server comes back online and has the highest priority, it

resumes handling all client requests.

• Quick recovery time: This solution has a quick recovery time, as the application is

pre-started on all servers. The recovery time is essentially the time needed to

reconfigure the priorities among the servers in the farm (a few seconds).

• Replication limitations: This solution does not support real-time replication, which is

limited to mirror architecture. However, a combined farm+mirror architecture is

available.

To implement a chain high availability solution, SafeKit offers a "power" variable in the

load balancing rules, which is set at the level of each server in the cluster. The power

variable allows you to allocate more or less traffic to a server. When the power variable is

set as a multiple of 64 between servers (e.g., 1, 64, 64*64, 64*64*64, ...), the chain

high availability solution is implemented.

1.4 Clusters running several modules

1.4.1 The SafeKit farm+mirror cluster

Network load balancing, file replication and application failover

You can mix farm and mirror modules on the same cluster.

This option allows you to implement a multi-tier application architecture, such as

apache_farm.safe (farm architecture with load balancing and failover) and

postgresql.safe (mirror architecture with file replication and failover) on the same

servers.

As a result, load balancing, file replication and failover are managed coherently on the

same servers.

1.4.2 The SafeKit active/active cluster with replication

Crossed replication and mutual failover

SafeKit User's Guide

26 39 A2 38MC 05

In an active / active cluster with replication, there are two servers and two mirror

modules in mutual failover (appli1.safe and appli2.safe). Each application server is

backup of the other server.

If one application server fails, both applications will run on the same physical server.

Once the failed server is restarted, its application will return to its default primary server.

A mutual failover cluster is more cost-effective than two separate mirror clusters, as it

eliminates the need for backup servers that remain idle most of the time, waiting for a

primary server to fail. However, in the event of a server failure, the remaining server

must be capable of handling the combined workload of both applications.

Note that:

• Both applications, Appli1 and Appli2, must be installed on each server to enable

application failover.

• This architecture is not limited to just two applications; N application modules can be

deployed across two servers.

• Each mirror module will have its own virtual IP address, its own replicated file

directories, and its own restart scripts.

1.4.3 The SafeKit N-1 cluster

Replication and application failover from N servers to 1

In an N-1 cluster, N mirror application modules are deployed across N primary servers

and a single backup server.

In the event of a failure, unlike in an active/active cluster, the backup server does not

need to manage a double workload when a primary server fails. This assumes only one

failure occurs at a time. While the solution can support multiple primary server failures

simultaneously, in such cases, the single backup server will need to handle the combined

workload of all the failed servers. In a N-1 cluster, there are N mirror application modules

installed between N primary servers and one backup server.

Note that:

 Technical overview

39 A2 38MC 05 27

• All applications (Appli1, Appli2, Appli3) must be installed on the single backup server

to enable application failover.

• Each mirror module will have its own virtual IP address, its own replicated file

directories, and its own restart scripts.

1.5 The SafeKit Hyper-V or KVM cluster

1.5.1 Load balancing, replication, failover of entire virtual machines

The Hyper-V or KVM cluster is an example of an active-active cluster. Multiple

applications can be hosted in various virtual machines, which are replicated and restarted

by SafeKit. Each virtual machine is managed by SafeKit within its own mirror module.

The solution has the following features:

• Real-time synchronous replication of entire virtual machines with failover capabilities.

• A centralized, user-friendly SafeKit console for managing all VMs, including the ability

to migrate VMs between servers to optimize load distribution.

• A checker for each VM to detect if it has locked up, crashed, or ceased to function,

and to restart the VM if necessary.

• An attractive solution that requires no application integration.

• A robust architecture suitable for high-availability solutions that cannot be integrated

at the application level.

A free trial of the Hyper-V cluster with SafeKit is available here.

A free trial of the KVM cluster with SafeKit is available here.

1.6 SafeKit clusters in the cloud

For a full description, refer to section 16.

1.6.1 Mirror cluster in Azure, AWS and GCP

SafeKit delivers high-availability clusters with real-time replication and failover in Azure,

AWS, and GCP through the deployment of a mirror module.

https://www.evidian.com/products/high-availability-software-for-application-clustering/hyper-v-replication-automatic-failover-load-balancing/safekit-quick-installation-guide-with-hyper-v/
https://www.evidian.com/products/high-availability-software-for-application-clustering/hyper-v-replication-automatic-failover-load-balancing/safekit-quick-installation-guide-with-hyper-v/
https://www.evidian.com/products/high-availability-software-for-application-clustering/linux-kvm-high-availability-replication-automatic-failover-load-balancing/safekit-quick-installation-guide-with-kvm/

SafeKit User's Guide

28 39 A2 38MC 05

The mirror solution in the cloud is similar to the on-premise one, except that the virtual

IP address must be configured at the load balancer level:

• Virtual machines are placed in different availability zones, which are in different

subnets.

• The critical application runs on the primary server.

• Users connect to a primary/secondary virtual IP address managed by the cloud load

balancer.

• SafeKit provides a health check configured in the load balancer. On the primary

server, the health check returns OK to the load balancer, while it returns nothing on

the secondary server. Thus, all requests to the virtual IP address are routed to the

primary server.

• If the primary server fails or is stopped, the secondary server automatically becomes

the primary one and returns OK to the health check. Thus, all requests to the virtual

IP address are rerouted to the new primary server.

• SafeKit monitors the critical application on the primary server using SafeKit checkers.

• SafeKit automatically restarts the critical application in the event of software or

hardware failure, thanks to restart scripts.

• SafeKit performs synchronous real-time replication of files containing critical data.

For more information, refer to mirror cluster in Azure, mirror cluster in AWS or mirror

cluster in GCP.

1.6.2 Farm cluster in Azure, AWS and GCP

SafeKit delivers high-availability clusters with network load balancing and failover in

Azure, AWS, and GCP through the deployment of a farm module.

https://www.evidian.com/products/high-availability-software-for-application-clustering/azure-high-availability-cluster-synchronous-replication-failover/safekit-quick-installation-guide-in-azure-with-real-time-replication-and-failover/
https://www.evidian.com/products/high-availability-software-for-application-clustering/aws-high-availability-cluster-synchronous-replication-failover/safekit-quick-installation-guide-in-aws-mirror-safe-module-for-real-time-replication-and-failover/
https://www.evidian.com/products/high-availability-software-for-application-clustering/gcp-high-availability-cluster-synchronous-replication-failover/safekit-quick-installation-guide-in-gcp-with-real-time-replication-and-failover/
https://www.evidian.com/products/high-availability-software-for-application-clustering/gcp-high-availability-cluster-synchronous-replication-failover/safekit-quick-installation-guide-in-gcp-with-real-time-replication-and-failover/

 Technical overview

39 A2 38MC 05 29

The farm solution in the cloud is similar to the on-premise one, except that the virtual IP

address must be configured at the load balancer level:

• Virtual machines are placed in different availability zones, which are in different

subnets.

• The critical application runs on all servers.

• Users are connected to a virtual IP address managed by the cloud load balancer.

• SafeKit provides a health check configured in the load balancer. The health check

returns OK on all servers running the application.

• If a server fails or is stopped, the checker returns nothing to the load balancer, which

then stops routing requests to that server.

• SafeKit monitors the critical application on all servers using SafeKit checkers.

• SafeKit automatically restarts the critical application on a server when there is a

software failure, thanks to restart scripts.

For more information, refer to farm cluster in Azure, farm cluster in AWS or farm cluster

in GCP.

https://www.evidian.com/products/high-availability-software-for-application-clustering/azure-load-balancing-cluster-failover/safekit-quick-installation-guide-in-azure-with-network-load-balancing-and-failover/
https://www.evidian.com/products/high-availability-software-for-application-clustering/aws-load-balancing-cluster-failover/safekit-quick-installation-guide-in-aws-with-network-load-balancing-and-failover/
https://www.evidian.com/products/high-availability-software-for-application-clustering/gcp-load-balancing-cluster-failover/safekit-quick-installation-guide-in-gcp-with-network-load-balancing-and-failover/
https://www.evidian.com/products/high-availability-software-for-application-clustering/gcp-load-balancing-cluster-failover/safekit-quick-installation-guide-in-gcp-with-network-load-balancing-and-failover/

SafeKit User's Guide

30 39 A2 38MC 05

39 A2 38MC 05 31

2. Installation

 Section 2.1 “SafeKit install”

 Section 2.2 “Mirror installation recommendation”

 Section 2.3 “Farm installation recommendation”

 Section 2.4 “SafeKit upgrade”

 Section 2.5 “SafeKit full uninstall”

 Section 2.6 “SafeKit documentation”

2.1 SafeKit install

2.1.1 Download the package

1. Connect to https://support.evidian.com/safekit

2. Go to <Version 8.2>/Platforms/<Your platform>/Current versions

3. Download the package

In Windows, two packages are available:

• A Windows Installer package (safekit_windows_x86_64_8_2_x_y.msi). It

depends on the VS2022 C runtime which must be previously installed

• A standalone executable bundle (safekit_windows_x86_64_8_2_x_y.exe), which

includes the SafeKit installation and the VS2022 C runtime

Choose one or the other package depending on whether the VS2022 C runtime is

installed or not.

2.1.2 Installation directories and disk space provisioning

SafeKit is installed in:

SAFE

• in Windows

SAFE=C:\safekit

if %SYSTEMDRIVE%=C:

• in Linux

SAFE=/opt/safekit

Minimum free disk space: 97MB

SAFEVAR

• in Windows

SAFEVAR=

C:\safekit\var

if %SYSTEMDRIVE%=C:

• in Linux

SAFEVAR=/var/safekit

Minimum free disk space: 20MB + at least

20MB (up to 3 GB) per module for dumps

https://support.evidian.com/safekit
https://support.evidian.com/solutions/downloads/safekit/version_7.5/platforms/windows/current_versions/safekit_windows_x86_64_7_5_2_11.msi
https://support.evidian.com/solutions/downloads/safekit/version_7.5/platforms/windows/old_versions/safekit_windows_x86_64_7_5_2_11.exe

SafeKit User's Guide

32 39 A2 38MC 05

2.1.3 SafeKit install procedure

2.1.3.1 Install on Windows as administrator

2.1.3.1.1 SafeKit package install

1. Log-in as administrator on Windows server

2. Locate the downloaded file safekit_windows_x86_64_8_2_x_y.msi (or
safekit_windows_x86_64_8_2_x_y.exe)

3. Install in interactive mode by double-clicking it and go through the installer wizard

Before SafeKit 8.2.3, after installation, you need to run the firewall configuration

scripts (see section 10.3) and initialize the SafeKit web service (see section 11.2.1.2).

Since SafeKit 8.2.3, at the end of the SafeKit Setup, you will be asked to check or

uncheck " Set console credentials and firewall rules now ".

If the box is checked, when clicking the “Finish” button:

o it configures Microsoft Windows Firewall for SafeKit. For details or other

firewalls, see section 10.3.

o it opens a window to enter the password for the admin user of the SafeKit web

console.

This step is mandatory to initialize the default configuration of the web service

that requires authentication. It is initialized with the admin user and the given

password pwd, for instance. It then allows to access to all the web console's

features, by logging in with admin/pwd, and run distributed commands. For

details, see section 11.2.1.

 Installation

39 A2 38MC 05 33

The password must be identical on all nodes that belong to the same SafeKit

cluster. Otherwise, web console and distributed commands will fail with

authentication errors.

or

3. Install in non-interactive mode, by executing:

msiexec /qn /i safekitwindows_8_2_x_y.msi

Then, the firewall setup and web service initialization must be done.

2.1.3.1.2 Firewall setup

This step is mandatory to enable communication between the nodes of the SafeKit cluster

and with the web console.

No action required when firewall automatic configuration has been performed during the

package install. Otherwise see section 10.3.

2.1.3.1.3 Web service initialization

This step is mandatory to initialize the default configuration of the web service, which is

accessed by the web console and the global safekit command. The web service requires

authentication to access the service. No action required when the web service

initialization has been performed during the package install. Otherwise, see section

11.2.1.2.

2.1.3.1.4 Antivirus setup

This step is only necessary if the server's antivirus interferes with the operation of

SafeKit. See section 10.6 for the list of legitimate SafeKit directories and processes that

should not be affected by the antivirus.

2.1.3.2 Install on Linux as root

2.1.3.2.1 SafeKit package install

1. Open a Shell console as root on Linux server

2. Go to the directory that contains the downloaded file
safekitlinux_x86_64_8_2_x_y.bin

auto extractible zip file

3. Run chmod +x safekitlinux_x86_64_8_2_x_y.bin

4. Run./safekitlinux_8_2_x86_64_x_y.bin

it extracts the package and the safekitinstall script

5. Install in interactive mode by executing ./safekitinstall

During the installation:

• reply to “Do you accept that SafeKit automatically configure the local firewall to

open these ports (yes|no)?”

If you answer yes, it configures firewalld or iptable Linux firewall for SafeKit.

For details or other firewalls, see section 10.3.

• reply to “Please enter a password or "no" if you want to set it later”

This step is mandatory to initialize the default configuration of the web service.

The web service requires authentication to access the service.

SafeKit User's Guide

34 39 A2 38MC 05

It initializes it with the admin user and the given password pwd, for instance. It

then allows to access to all the web console's features, by logging in with

admin/pwd, and run distributed commands. For details, see section 11.2.1.

The password must be identical on all nodes that belong to the same SafeKit

cluster. Otherwise, web console and distributed commands will fail with

authentication errors.

or

5. Install in non-interactive mode, by executing:

./safekitinstall -q

Use the option -nofirewall for disabling the firewall automatic setup.

Use the option -passwd pwd for initializing the web service authentication (where pwd

is the password set for the admin user).

The install log is /tmp/safekitinstall_log.

2.1.3.2.2 Firewall setup

This step is mandatory to enable communication between the nodes of the SafeKit cluster

and with the web console.

No action required when firewall automatic configuration has been performed during the

package install. Otherwise see section 10.3.

2.1.3.2.3 Web service initialization

This step is mandatory to initialize the default configuration of the web service, which is

accessed by the web console and the global safekit command. The web service requires

authentication to access the service. No action required when the web service

initialization has been performed during the package install. Otherwise, see section

11.2.1.2.

2.1.3.2.4 Antivirus setup

This step is only necessary if the server's antivirus interferes with the operation of

SafeKit. See section 10.6 for the list of legitimate SafeKit directories and processes that

should not be affected by the antivirus.

2.1.4 Use the SafeKit web console or command line interface

Once installed, the SafeKit cluster must be defined. Then modules can be installed,

configured, and administered. All these actions can be done with the SafeKit console or

the command line interface.

2.1.4.1 The SafeKit web console

1. Start a web browser (Microsoft Edge, Firefox, or Chrome)

2. Connect it to the URL http://host:9010 (where host is the name or IP address of

one of the SafeKit nodes)

3. In the login page, enter admin as user’s name and the password you gave on

initialization (e.g., pwd)

4. Once the console is loaded, the admin user can access to Monitoring and

Configuration in the navigation sidebar, as he has the default Admin role

For details see section 3.

http://servername:9010/

 Installation

39 A2 38MC 05 35

2.1.4.2 The SafeKit command line interface

It is based on the single safekit command located at the root of the SafeKit installation

directory. Almost all safekit commands can be applied locally or on a list of nodes in the

SafeKit cluster. This is called global or distributed command.

For details on the safekit command, see section 9.

To use the safekit command:

In

Windows

1. Open a PowerShell console as administrator

2. Go to the root of the SafeKit installation directory SAFE (by default

SAFE=C:\safekit if %SYSTEMDRIVE%=C:)

cd c:\safekit

3. Run .\safekit.exe <arguments> for the local command

4. Run .\safekit.exe -H "<hosts>" <arguments> for the command

distributed across multiple nodes

In Linux

1. Open a Shell console as root

2. Go to the root of the SafeKit installation directory SAFE (by default

SAFE=/opt/safekit)

cd /opt/safekit

3. Run ./safekit <arguments> for the local command

4. Run ./safekit -H "<hosts>" <arguments> for the command

distributed across multiple nodes

For instance, to display the levels (SafeKit, OS…):

• for the local host

safekit level

• for all hosts configured in the SafeKit cluster

safekit -H "*" level

2.1.5 SafeKit license keys

License keys are determined and verified based on the Operating System (Windows or

Linux) and the hostnames of machines (not the FQDN), as returned by the hostname

command in a Windows command prompt or a Linux shell. They are delivered in a text

file. Once the license key file is installed, there is no need for a connection to a license

server.

• If you do not install any license key file, the product will stop functioning every 3

days. However, it can be restarted for another 3 days.

• You can download a one-month trial key file from the following address:

https://www.evidian.com/products/high-availability-software-for-application-

clustering/high-availability-and-load-balancing-cluster-key/

• When a license key expires or is incorrect (e.g., wrong OS or hostname), the system

falls into the 3-day behavior.

https://www.evidian.com/products/high-availability-software-for-application-clustering/high-availability-and-load-balancing-cluster-key/
https://www.evidian.com/products/high-availability-software-for-application-clustering/high-availability-and-load-balancing-cluster-key/

SafeKit User's Guide

36 39 A2 38MC 05

• After placing a purchase order, you obtain a permanent key file (see section 8.2). The

permanent key file can be installed without reinstalling or stopping the product.

• The key file can contain keys for multiple hostnames. SafeKit will detect the

appropriate license for the correct OS/hostname on each server.

• Save the key file into the SAFE/conf/license.txt file (or any other file in

SAFE/conf) on each server.

• If files in SAFE/conf contain more than one key file, the most favorable key will be

chosen.

• Check the key conformance on each server with the command SAFE/safekit level

or with the SafeKit web console.

2.1.6 System specific procedures and characteristics

2.1.6.1 Windows

• Apply a special procedure to properly stop SafeKit modules at machine shutdown and

to start safeadmin service at boot: see section 10.4.

• For network interfaces with teaming and with SafeKit load balancing, it is necessary

to uncheck "Vip" on physical network interfaces of teaming and keep it checked only

on teaming virtual interface.

2.1.6.2 Linux

• In Linux, the SafeKit package depends on other system packages. Most of them are

installed automatically, except those specific to the implementation of load balancing

in a farm and file replication in a mirror.

• For an updated list of required packages, see the SafeKit Release Notes.

• The user safekit and a group safekit are created: all users belonging to the

safekit group, and the user root can execute SafeKit commands

• In a farm module with load balancing on a virtual IP address, the vip kernel module is

compiled when the module is configured. To compile successfully, Linux packages

must be installed. See the SafeKit Release Notes for an up-to-date list of the

packages.

• For a farm with SafeKit load balancing on a bonding interface, no ARP should be set in

the bonding configuration. Otherwise, the association <virtual IP address, invisible

virtual MAC address> is broken in client ARP caches with physical MAC address of the

bonding interface.

• When Secure Boot is enabled and you are using a farm module, follow the procedure

described in section 10.5 to sign and enroll the SafeKit kernel modules that

implement load-balancing.

2.2 Mirror installation recommendation

 ip 1.1 ip 1.2

virtual ip = ip 1.10

mirror(app1)= app1

 dir1 dir1

https://support.evidian.com/solutions/downloads/safekit/version_8.2/documentation/safekit82releasenotes.htm
https://support.evidian.com/solutions/downloads/safekit/version_8.2/documentation/safekit82releasenotes.htm

 Installation

39 A2 38MC 05 37

2.2.1 Hardware prerequisites

• 2 servers with the same Operating System

• Supported OS: https://support.evidian.com/supported_versions/#safekit

• Disk drive with write-back cache recommended for the performance of the IOs

2.2.2 Network prerequisites

• 1 physical IP address per server (ip 1.1 and ip 1.2)

• If you need to set a virtual IP address (ip 1.10), both servers must be in the same IP

network with the standard SafeKit configuration (LAN or extended LAN between two

remote computer rooms). For setting a virtual IP address with servers in different IP

networks, see section 13.5.3.

2.2.3 Application prerequisites

• The application is installed and starts on both servers

• Application can be started and stopped using command lines

• On Linux, command lines like service "service" start|stop or su -user "appli-
cmd"

• On Windows, command lines like net start|stop "service"

• If necessary, application with a procedure to recover after crash

• Remove automatic application start at boot and configure the boot start of the

module instead

2.2.4 File replication prerequisites

• File directories that will be replicated are created on both servers

• They are located at the same place on both servers in the file tree

• It is better to synchronize clocks of both server for file replication (NTP protocol)

• On Linux, align uids/gids on both servers for owners of replicated directories/files

• See also system specific procedures and characteristics in section 2.1.6

2.3 Farm installation recommendation

ip 1.1 ip 1.2 ip 1.3

virtual IP = ip 1.20 ip 1.20 ip 1.20

farm (app2) = app2 app2 app2

2.3.1 Hardware prerequisites

• At least 2 servers with the same Operating System

• Supported OS: https://support.evidian.com/supported_versions/#safekit

• Linux: kernel compilation tools installed for vip kernel module

2.3.2 Network prerequisites

• 1 physical IP address per server (ip 1.1, ip 1.2, ip 1.3)

https://support.evidian.com/supported_versions/#safekit
https://support.evidian.com/supported_versions/#safekit

SafeKit User's Guide

38 39 A2 38MC 05

• If you need to set a virtual IP address (ip 1.20), servers must be in the same IP

network with the standard SafeKit configuration (same LAN or extended LAN between

remote computer rooms). For setting a virtual IP address with servers in different IP

networks, see section 13.5.3.

• See also system specific procedures and characteristics in section 2.1.6

2.3.3 Application prerequisites

The same prerequisites as for a mirror module described in section 2.2.3

2.4 SafeKit upgrade

If you encounter a problem with SafeKit, see the Software Release Bulletin containing the

list of fixes on the product.

If you want to take advantage of some new features, see the SafeKit Release Notes. This

document also tells you if you are in the case of a major upgrade (ex. 7.5 to 8.2) which

requires a different procedure from the one presented here.

The upgrade procedure consists in uninstalling the old package and then installing the

new package. All nodes in the same cluster must be upgraded.

2.4.1 Prepare the upgrade

1. Note the state "on" or "off" of SafeKit services and modules started automatically at

boot safekit boot webstatus; safekit boot status -m AM (where AM is the

name of the module) and in Windows: safekit boot snmpstatus;

The start at boot of the module can be defined in its configuration file. If so,

the use of the safekit boot command becomes unnecessary.

2. for a mirror module

note the server in the ALONE or PRIM status to know which server holds the up-to-

date replicated files

3. optionally, take snapshots of modules

Uninstalling/reinstalling will reset logs and dumps of each module. If you want to

keep this information (logs and last 3 dumps and configurations), run the command

safekit snapshot -m AM /path/snapshot_xx.zip (replace AM by the module

name)

2.4.2 Uninstall procedure

On Windows as administrator and on Linux as root:

1. stop all modules using the command safekit shutdown

For a mirror in the PRIM-SECOND status, stop first the SECOND server to avoid an

unnecessary failover

2. close all editors, file explorers, shells, or terminal under SAFE and SAFEVAR (to avoid

package uninstallation error)

3. uninstall SafeKit package

https://support.evidian.com/solutions/downloads/safekit/version_8.2/documentation/82softwarereleasebulletin.htm
https://support.evidian.com/solutions/downloads/safekit/version_8.2/documentation/safekit82releasenotes.htm

 Installation

39 A2 38MC 05 39

In Windows Use the Control Panel-Add/Remove Programs applet

In Linux Use the command safekit uninstall

4. undo all configurations that you have done manually for the firewall setup (see

section 10.3)

Uninstalling SafeKit includes creating a backup of the installed modules in

SAFE/Application_Modules/backup, then unconfiguring them.

2.4.3 Reinstall and postinstall procedure

1. Install the new package as described in section 2.1

2. Check with the command safekit level the installed SafeKit version and the validity

of the license (which has not been uninstalled)

If you have a problem with the new package and the old key, take a temporary

license: see section 2.1.5

3. If you use the web console, clear the browser cache and refresh pages in the web

browser

4. Since SafeKit 8.2.1, previously configured modules are automatically reconfigured on

upgrade.

However, you may still need to reconfigure module to apply any configuration

changes coming with the new version (see the SafeKit Release Notes). Reconfigure

the module either with:

o the web console by navigating to “Configuration/Modules configuration/

Configure the module/”

o the web console by directly entering the URL

http://host:9010/console/en/configuration/modules/AM/config/

o the command safekit config -m AM

where AM is the module name

5. If necessary, reconfigure the automatic start of modules at boot

The start at boot of the module can be defined in its configuration file. If so, skip this

step. Otherwise, run the command safekit boot -m AM on (replace AM by the

module name)

6. Restart the modules

Mirror

module

The module must be started as primary on the node with the updated

replicated files (former PRIM or ALONE) either with:

• the web console by navigating to Monitoring/ of the node/Force

start/As primary

• the command safekit prim -m AM (replace AM by the module name)

https://support.evidian.com/solutions/downloads/safekit/version_8.2/documentation/safekit82releasenotes.htm
http://host:9010/safekit-portal/en/configuration/modules/AM/config/

SafeKit User's Guide

40 39 A2 38MC 05

Check that the application is working properly once the module is in

ALONE state, before starting the other node.

On the other node (former SECOND), the module must be started in

secondary mode either with:

• the web console by navigating to Monitoring/ of the node/Force

start/As secondary

• the command safekit second -m AM (replace AM by the module

name)

Once this initial start has been performed by selecting the primary and

secondary nodes, subsequent starts can be performed with:

• the web console by navigating to Monitoring/ of the node/

Start/

• the command safekit start -m AM (replace AM by the module

name)

Farm

module

Start the module either with:

• the web console by navigating to Monitoring/ of the module/

Start/

• the command safekit start -m AM (replace AM by the module

name)

Furthermore, in cases where you have modified the setup of the SafeKit web service,

SNMP monitoring or SafeKit notification agent:

1. the SafeKit web service safewebserver

• If its automatic start at boot had been disabled, disable it again with the

command safekit boot weboff

• If you had modified configuration files and these have evolved in the new version,

your modifications are saved into SAFE/web/conf before being overwritten by the

new version. Carrying over your old configuration to the new version may require

some adaptations. For details on the default setup and all predefined setups, see

section 11.

• For HTTPS and login/password configurations, certificates, and user.conf /

group.conf generated for the previous release should be compatible.

2. The SafeKit SNMP monitoring

• In Windows, if its automatic start at boot had been enabled, enable it again with

the command safekit boot snmpon

• If you had modified configuration files and these have evolved in the new version,

your modifications are saved into SAFE/snmp/conf before being overwritten by

the new version. Carrying over your old configuration to the new version may

require some adaptations. For details, see section 10.10.

3. The SafeKit email notification agent

Since SafeKit 8.2.4, SafeKit offers a notification agent to send emails for major

modules events. For details, see section 10.9.

 Installation

39 A2 38MC 05 41

If you have enabled it, it will remain enabled after the upgrade. However, you may

need to reconfigure the SafeKit notification agent, as described in section 10.9.1, if its

configuration file has evolved between the two versions.

2.5 SafeKit full uninstall

For completely removing the SafeKit package, follow the procedure described below.

2.5.1 Uninstall on Windows as administrator

1. Log-in as administrator on Windows server

2. stop all modules using the command safekit shutdown

3. close all editors, file explorers, shells, or cmd under SAFE and SAFEVAR (to avoid

package uninstallation error)

(SAFE=C:\safekit if %SYSTEMDRIVE%=C: ; SAFEVAR=C:\safekit\var if

%SYSTEMDRIVE%=C:)

4. uninstall SafeKit using the Control Panel-Add/Remove Programs applet

5. reboot the server

6. delete the folder SAFE that is the installation directory of the previous install of

SafeKit

7. undo all configurations that you have done for SafeKit boot/shutdown (see section

10.4)

8. undo all configurations that you have done for firewalls rules setting (see section

10.3)

2.5.2 Uninstall on Linux as root

1. Open a Shell console as root on Linux server

2. stop all modules using the command safekit shutdown

3. close all editors, file explorers, shells, or terminal under SAFE and SAFEVAR

(SAFE=/opt/safekit ; SAFEVAR=/var/safekit)

4. uninstall SafeKit using the safekit uninstall -all command and answer yes when

prompted to delete all SafeKit folders

5. reboot the server

6. undo all configurations that you have done for firewalls rules setting

See section 10.3

7. delete the user/group created by the previous install (default is safekit/safekit)

with the commands:

userdel safekit

groupdel safekit

2.6 SafeKit documentation

SafeKit Solution The SafeKit solution is fully described.

https://www.evidian.com/safekit

SafeKit User's Guide

42 39 A2 38MC 05

SafeKit Training
Refer to this online training for a quick start in using

SafeKit.

SafeKit Release Notes

It presents:

• latest install instructions

• major changes

• restrictions and known problems

• migration instructions

Software Release Bulletin
Bulletin listing SafeKit 8.2 packages, with descriptions of

changes and fixed issues.

SafeKit Knowledge Base

List of known SafeKit issues and restrictions.

Other KBs are available on the Evidian support site, but

are only accessible to registered users. For more details on

the support site, see section 8.

SafeKit user's guide

This is the guide. Please refer to the guide corresponding

to your SafeKit version number. It is delivered with the

SafeKit package and can be accessed via the web console

under / User’s guide.

The link opposite takes you to the latest version of this

guide.

https://www.evidian.com/products/high-availability-software-for-application-clustering/safekit-training-introduction/#training
https://support.evidian.com/solutions/downloads/safekit/version_8.2/documentation/safekit82releasenotes.htm
https://support.evidian.com/solutions/downloads/safekit/version_8.2/documentation/82softwarereleasebulletin.htm
https://support.evidian.com/solutions/downloads/safekit/version_8.2/documentation/safekitknowledgebase.htm
https://support.evidian.com/
https://support.evidian.com/solutions/downloads/safekit/version_8.2/documentation/safekit82userguideen.pdf

39 A2 38MC 05 43

3. The SafeKit web console

 Section 3.1 “Start the web console”

 Section 3.2 “Configure the cluster”

 Section 3.3 “Configure a module”

 Section 3.4 “Monitor a module”

 Section 3.5 “Snapshots or logs of module for debug and support”

 Section 3.6 “Secure access to the web console”

The SafeKit 8 web console and API have evolved from earlier versions. As a result, the

console delivered with SafeKit 8 can only administer SafeKit 8 servers, which cannot be

administered with an older console.

3.1 Start the web console

The web console permits to administer one SafeKit cluster. A SafeKit cluster is a set of

servers where SafeKit is installed and running. All servers belonging to a given SafeKit

cluster share the same cluster configuration (list of servers and networks used) and

communicate with each other’s to have a global view of SafeKit modules configurations.

The same server can not belong to many SafeKit clusters.

3.1.1 Start a web browser

• The web browser runs on any allowed SafeKit nodes or workstation that can reach the

SafeKit servers over the network.

• Network, firewall and proxy configuration must allow access to all the servers that are

administered with the web console

• JavaScript must be available and enabled in the web browser

• Tested browsers are Microsoft Edge, Firefox, and Google Chrome

• To avoid security popups in Microsoft Edge, you may add the SafeKit servers

addresses into the Intranet or Trusted zone

• The messages in the web console are displayed in French or English languages,

according to the selected language into the console

• After SafeKit upgrade, you must clear the browser’s cache to get the new web

console pages. A quick way to do this is a keyboard shortcut:

1. Open the browser to any web page and hold CTRL and SHIFT while tapping the

DELETE key

2. A dialog box will open to clear the browser. Set it to clear everything and click

Clear Now or Delete at the bottom

3. Close the browser, stop all background processes that may be still running and

re-open it fresh to reload the web console

SafeKit User's Guide

44 39 A2 38MC 05

3.1.2 Connect to a SafeKit node

By default, access to the web console requires the user to authenticate himself with a

name and password. On SafeKit install, you had to initialize it with the user admin and

assign a password. This admin name and password are sufficient to access all the

console's features. For more details on this configuration, see section 11.2.1.

1. Start a web browser (Microsoft Edge, Firefox, or Chrome)

2. Connect it to the URL http://host:9010 (where host is the name or IP address of one

of the SafeKit servers). If HTTPS is configured, there is an automatic redirection to

https://host:9453.

3. The SafeKit server to which the console is connected (host in the URL) is called the

connection node. This node acts as a proxy to communicate on behalf of the

console with all other SafeKit servers.

You can connect to any node of the cluster since the console offer global

view and actions. On connection error with one node, connect to another

node.

4. In the login page, enter admin as user’s name and the password you gave on

initialization (e.g., pwd).

5. The SafeKit web console is loaded

• When the console is connected to a SafeKit server on which the cluster is configured,

the name of the node corresponding to the server (as defined in the cluster

configuration) is displayed in the header. This is the connection node (node1 in the

example). If the cluster is not yet configured, no name is displayed.

• Click on to open the menu to read the SafeKit User’s Guide, select the language,

enable/disable the dark mode and logout.

• Click on to collapse or expand the navigation sidebar.

• Click on “Configuration” to configure the cluster and the modules. Configuration is
only authorized to users that have Admin role. By default, the admin user has the

Admin role.

http://servername:9010/
https://host:9453/

 The SafeKit web console

39 A2 38MC 05 45

• (4) Click on “Monitoring” to monitor and control the configured modules.

Monitoring is authorized to users that have Admin, Control and Monitor roles. With

Monitor role, actions on modules (start, stop…) are prohibited.

The web console offers contextual help by clicking on the icon.

3.1.3 List of connection nodes

The console offers the ability to easily switch connection node, even if the node belongs

to a different cluster.

• (1) Click on to display the list of connection nodes.

By default, if the cluster is configured, it lists all the nodes belonging to the cluster.

Otherwise, this menu is unavailable.

• (2) For example, click on node2 to connect the web console to node2. This is a

shortcut for changing the URL in the browser. The web console is loaded from this

node, which becomes the connection node.

• (3) Click on to open the submenu that allows to:

o Export the list of connection nodes to a JSON file on your workstation.

It contains the names and addresses of the nodes in the list.

o Import the list of connection nodes from a JSON file on your workstation.

Use the exported JSON file as a template and define your own list of connection

nodes. This can be used if you wish to manage nodes belonging to different

SafeKit clusters. You can also define a cluster name to which the nodes belong.

o Import the cluster nodes

Use this option to reset an imported list and restore the default list, which

contains only the nodes defined in the cluster of the node to which the console is

connected.

SafeKit User's Guide

46 39 A2 38MC 05

3.2 Configure the cluster

The SafeKit cluster must be defined before installing, configuring, or starting a SafeKit

module. A Safekit cluster is defined by a set of networks and the addresses, on these

networks, of a group of SafeKit servers, named nodes. These nodes implement one or

more modules. Each server is not necessarily connected to all the networks, but at least

one.

The cluster configuration is saved on the servers’ side into the cluster.xml file (see

section 12). For a correct behavior, it is required to apply the same cluster configuration

on all the nodes.

You must fully define the cluster configuration before installing and

configuring modules since the modification of the cluster can affect the

configuration or the execution of installed modules.

The cluster configuration home page is available :

• Directly via the URL http://host:9010/console/en/configuration/cluster

Or

• By navigating the console via “Configuration/Cluster configuration”

If the cluster is not yet configured, the cluster configuration wizard is automatically

opened.

3.2.1 Cluster configuration wizard

Open the configuration wizard:

• Directly via the URL http://host:9010/console/en/configuration/cluster/config

Or

• Navigate in the console via “Configuration/Cluster configuration/

Configure the cluster/”

The cluster configuration wizard is a step-by-step guided form:

1. “Edit cluster configuration” described in section 3.2.1.1

2. “Check result” described in section 3.2.1.2

3. to “Exit cluster configuration wizard”

http://host:9010/safekit-portal/en/configuration/cluster/config
http://host:9010/safekit-portal/en/configuration/cluster/config

 The SafeKit web console

39 A2 38MC 05 47

3.2.1.1 Edit cluster configuration

• (1) Fill in the form to first assign a user-friendly name for the network. This name is

used for configuring heartbeat networks used by a module.

Click on to add another node/lan or on to remove the node/lan from the

cluster.

When a node/lan is removed from the cluster, all modules using it in its

configuration may become unusable.

• (2) Fill in the IP address of the node and then press the Tab key to check the server

connectivity and automatically insert the server hostname.

SafeKit User's Guide

48 39 A2 38MC 05

The icon next to the address reflects the reachability of the node.

means that the SafeKit server is available. The tooltip gives information on the

server.

means that there was no reply from the server within the timeout delay. Fix the

problem to be able to administer this node. It may be a bad address, a network or

host failure, a bad configuration of the web browser or the firewall, the stop of the

SafeKit web service on the node. For solving the problem, refer to the section 7.1.

• Change the node name if necessary. This name is the one that will be used by the

SafeKit administration service for uniquely identifying a SafeKit node. It is also the

one displayed into the SafeKit web console.

• (3) If you prefer, click on “Advanced configuration” to switch to XML cluster editing.

Click on to open the SafeKit User’s Guide on the configuration description in the

cluster.xml file.

• Click on “Reload” to discard your current modifications and reload the original

configuration.

• (4) Once the edition is completed, click on “Save and Apply” to save and apply the

edited configuration to all nodes in the cluster.

If required, you can reapply the configuration to all nodes without modifying

it.

For examples of cluster configurations with two networks refer to section

15.1.1; with three nodes refer to section 15.2.1.

 The SafeKit web console

39 A2 38MC 05 49

3.2.1.2 Check result

• (1) Read the result of the operation on each node:

o “Success” means the configuration was successful.

o “Failure” means the configuration has failed. Click to read the output of

commands executed on the node and search for the error. You may need to

modify the parameters entered or connect to the node to correct the problem.

Once the error has been corrected, “Save and apply” again.

• (2) Click on “Configure modules” to exit the cluster configuration wizard and navigate

to modules configuration.

Or

• (3) Click on to “Exit the cluster configuration wizard” and navigate to the cluster

configuration home page

3.2.2 Cluster configuration home page

When the cluster is configured, the cluster configuration home page is available.

Open it:

• Directly via the URL http://host:9010/console/en/configuration/cluster

Or

• By navigating the console via “Configuration/Cluster configuration”

In this example, the console is loaded from 10.0.0.107, which corresponds to node1 in

the existing cluster. This is the connection node.

http://host:9010/safekit-portal/en/configuration/cluster/config

SafeKit User's Guide

50 39 A2 38MC 05

• (1) Click on “Configuration” in the navigation sidebar

• (2) Click on “Cluster configuration” tab

Nodes configured in the cluster are listed with their configuration date.

• (3) Click on to display details about the node: networks name and addresses

defined in the cluster configuration, SafeKit version, license key, hostname, OS.

• (4) Click on one of the buttons:

o to modify the cluster configuration and/or re-apply it. This opens the cluster

configuration wizard and loads the cluster configuration from the connection node.

o to download the cluster configuration in XML format from the connection node.

o to unconfigure the cluster on one or more nodes

3.3 Configure a module

Once the cluster has been set up, you can configure a new module on the cluster. The

module configuration home page is accessible :

• Directly via the URL http://host:9010/console/en/configuration/modules

Or

• By navigating the console via “Configuration/Modules configuration”

http://host:9010/safekit-portal/en/configuration/modules

 The SafeKit web console

39 A2 38MC 05 51

If no module has been configured, the console automatically presents the page for

configuring a “New module”.

For module configuration examples refer to section 15.

3.3.1 Select the new module to configure

In this example, the console is loaded from 10.0.0.107, which corresponds to node1 in

the existing cluster. This is the connection node.

• (1) Click on “Configuration” in the navigation sidebar

• (2) Click on “Modules configuration” tab

• (3) Click on “New Module”

The page proposes to select a new module among several proposals visible by

clicking on :

o the “Main modules”, including the generic mirror.safe (refer to section 15.1.2)

and farm.safe (refer to section 15.2.2) modules for integrating a new application

into a mirror or farm architecture.

Here are the modules stored on the connection node, node1, under

SAFE/Application_Modules/generic, SAFE/Application_Modules/demo and

SAFE/Application_Modules/published.

SafeKit User's Guide

52 39 A2 38MC 05

o “Backup modules” archived on the connection node, which are saved when a

module is uninstalled on this node.

They are loaded from node1 under SAFE/Application_Modules/backup.

o “Other modules” which are examples of SafeKit features used in modules supplied

for testing purposes only. Refer to section 15 for the description some of them.

They are loaded from node1 under SAFE/Application_Modules/other.

o A locally stored module accessible from “Upload module”.

This feature can be used to configure a module for a given application (e.g.,

Microsoft SQL Server, PostgreSQL…) downloaded from one of the SafeKit quick

installation guides.

• (4) Select a module to configure from those listed above. In the example,

mirror.safe.

• (5) Click on the button Configure the new module.

• A dialog opens to give the new module name

• (6) Enter the name of the new module.

• (7) Click on “Confirm”

The module configuration wizard is opened. This is described below.

3.3.2 Module configuration wizard

The module configuration wizard is a step-by-step guided form.:

1. “Edit module configuration” described in section 3.3.2.1

2. “Edit module scripts (Optional)” described in section 3.3.2.2

3. “Enable communication encryption (Optional) ” described in section 3.3.2.3

4. “Save and apply” described in section 3.3.2.4

5. “Check result” described in section 3.3.2.5

6. to “Exit module configuration wizard”

https://www.evidian.com/products/high-availability-software-for-application-clustering/safekit-quick-installation-guides/
https://www.evidian.com/products/high-availability-software-for-application-clustering/safekit-quick-installation-guides/

 The SafeKit web console

39 A2 38MC 05 53

Note that module reconfiguration can only be applied to nodes on which the module in

question is not started. Therefore, stop the module before starting the configuration

wizard.

If needed, you can reapply the module configuration on all nodes without

modifying it.

3.3.2.1 Edit module configuration

Below is an example of editing the mirror.safe module configuration.

• (1) Fill in the form to assign values to the various components, add or remove them.

Click on to open the detailed panel for each component.

This form is used to enter only the main module configuration parameters.

The names of the “Heartbeat networks” proposed are the names of the lans

entered during cluster configuration.

• (2) For advanced module configuration, exhaustive compared to the form, click on

“Advanced configuration”. This switches to editing the module configuration file in

XML format, userconfig.xml.

SafeKit User's Guide

54 39 A2 38MC 05

Click on to open the SafeKit User’s Guide describing the configuration of the

various components in the userconfig.xml file.

• If necessary, click on “Reload” to discard your modifications and reload the complete

original configuration (including scripts if these were modified in the next step).

• (3) Once you have finished editing the module configuration, click on “Next step”.

For examples of mirror module configuration, refer to section 15.1.2 ; of

farm module configuration, refer to section 15.2.2.

3.3.2.2 Edit module scripts

Below is an example of editing the mirror.safe module scripts.

• (1) Click on “start_prim” or “stop_prim” to edit it and insert your application

start/stop.

Click on to copy the content and edit it with your favorite syntax editor. Once done,

paste the modified content into the input field with .

• (2) If necessary, click on “Advanced configuration” to list the other module’s scripts

and edit them (prestart, poststop, scripts for checkers…).

• Click on to open the SafeKit User’s Guide describing the module scripts.

• If necessary, click on “Reload” to discard your modifications and reload the complete

original configuration (including the module configuration if it was modified in the

previous step).

• (3) Once you have finished editing the module scripts, click on “Next step”.

 The SafeKit web console

39 A2 38MC 05 55

For examples of mirror module scripts, refer to section 15.1.3 ; of farm

module scripts, refer to section 15.2.3.

3.3.2.3 Enable communication encryption

Encryption of internal module communications between cluster nodes is enabled by

default. For details, see section 10.7.

• (1) Click “Enable” to enable or disable encryption of module communications.

When the module's encryption key is not identical on all nodes, internal

communication is impossible. The configuration must be reapplied to all

nodes to propagate the same key.

To generate new encryption keys, you need to:

1. disable encryption, then “Save and apply” configuration to all nodes

2. enable encryption, then “Save and apply” configuration to all nodes

• If necessary, click on “Reload” to discard your modifications and reload the complete

original configuration (including the module configuration and scripts if these were

modified in the previous steps).

• (2) Once this step is complete, click on “Next step”.

3.3.2.4 Save and apply

Step to select the nodes affected by the configuration.

SafeKit User's Guide

56 39 A2 38MC 05

• (1) Check/uncheck to select/unselect nodes. Please note that the connection node

(node1 in the example) is mandatory.

There are 2 cases where “Save and Apply” is disabled:

The module on the selected node is started and, in a state, other than STOP

(NotReady).

There was no reply from the node within the timeout delay. It may be a bad address,

a network or host failure, a bad configuration of the web browser or the firewall, the

stop of the SafeKit web service on the node. For solving the problem, refer to the

section 7.1.

In both cases, uncheck the node or click on “Save and check” to apply it later, after

stopping the module or solving the communication problem.

• (2) Click on “Save and check” to save the edited configuration on the connection node

and check its consistency. It then proceeds to the next step to display the result of

this operation.

Once this operation has been completed, any changes are saved on the connection

node. The configuration wizard can be exited and relaunched later to apply the saved

configuration. Until the saved configuration is applied, the last applied configuration

of the module remains active.

• (3) Click on “Save and apply” to save and apply the edited configuration on selected

nodes. It then proceeds to the next step to display the result of this operation.

If this operation is successful, the applied configuration becomes the active one for

the module.

On the server side, the module configuration is saved under

SAFE/modules/AM(where AM is the module name). When reconfiguring a

module, this directory is deleted and overwritten with the changes made in

the console. Thus, on the servers’ side, you must close all editors, file

explorers, shells or cmd under SAFE/modules/AM before applying the

configuration (otherwise there is a risk that the apply fails).

3.3.2.5 Check result

The example below shows the result of the “Save and Apply” operation. The layout for

“Save and Verify” is similar.

 The SafeKit web console

39 A2 38MC 05 57

• (1) Read the result of the operation on each node:

o “Success” means the operation was successful.

o “Failure” means the operation has failed.

Click to read the output of commands executed on the node and search for the

error. You may need to modify the parameters entered or connect to the node to

correct the problem. Once the error has been corrected, repeat the operation from

the previous step.

• (2) Click on “Monitor modules” to exit the module configuration wizard and navigate

to modules monitoring.

Or

• (3) Click on to “Exit the module configuration wizard” and navigate to the modules

configuration home page.

3.3.3 Modules configuration home page

Once the first module has been configured, the module configuration home page is

available. It allows you to view the modules installed on the cluster and to access the

configuration of a new module.

Open it:

• Directly via the URL http://host:9010/console/en/configuration/modules

Or

• By navigating the console via “Configuration/Modules configuration”

Before each reconfiguration, deconfiguration and uninstallation, on each

node, close all editors, file explorer, shells or cmd under SAFE/modules/AM

(or risk the operation failing).

In the following example, the console is loaded from 10.0.0.107, which corresponds to

node1 in the existing cluster. This is the connection node.

http://host:9010/safekit-portal/en/configuration/modules

SafeKit User's Guide

58 39 A2 38MC 05

• (1) Click on “Configuration” in the navigation sidebar.

• (2) Click on “Modules configuration” tab.

• Modules installed on the cluster are listed with the date the configuration was applied

and, if applicable, the date the configuration was saved but not yet applied.

• (3) Click on one of the buttons associated with the module:

o to modify its configuration or reapply its current configuration. This opens the

module configuration wizard and loads its current configuration from the

connection node.

o to download the .safe, consisting of all module files (userconfig.xml, scripts)

from the connection node.

o to reconfigure the module from the contents of a locally stored .safe.

o to restore a previous module configuration.

o SafeKit keeps a copy of the last three successful configurations (stored under

SAFE/modules/lastconfig on the server side). All module configuration files are

packaged in a .safe file, whose name is of the type of AM_<date>_<time> (where

AM is the module name).

o to remove internal files for the module on one or more nodes, without

uninstalling it. The user configuration files are kept for later re-application.

o to completely uninstall the module on one or more nodes.

 The SafeKit web console

39 A2 38MC 05 59

All module configuration files are packaged in a .safe file, which is archived on

the server side under SAFE/Application_Modules/backup.

• To configure a new module, click on “New module”

3.3.4 Edit the module configuration locally and then apply it

You may prefer to use your favorite editor to modify the module’s configuration file and

scripts or may need to add module scripts, such as custom checkers.

Follow the procedure below to modifye the module's configuration on your workstation

and then apply it.

• (1) Click on “Configuration” in the navigation sidebar.

• (2) Click on “Modules configuration” tab.

• (3) Click on to download the mirror.safe on your workstation.

• (4) Extract the content of mirror.safe, that is a zip file, to edit userconfig.xml,

add/delete/edit module scripts into the bin directory (add a custom checker for

instance).

• (5) Compress the modified directory into xx.safe (or xx.zip) then upload it with

(.safe and .zip extension are accepted).

• (6) Click on to select the file to be uploaded then “Confirm”.

The module configuration wizard is launched with the contents of this file. The new

contents are visible into the wizard. Got to step 4 to “Save and apply” this new

configuration.

SafeKit User's Guide

60 39 A2 38MC 05

3.4 Monitor a module

Once a module is configured, you can monitor its state and run actions on it (start,

stop…).

The modules monitoring home page is accessible :

• Directly via http://host:9010/console/en/monitoring

Or

• By navigating the console via “Monitoring”

3.4.1 Monitoring home page

In this example, the console is loaded from 10.0.0.107, which corresponds to node1 in

the existing cluster. This is the connection node. Two modules are configured: farm

and mirror.

• (1) Click on “Monitoring” in the navigation sidebar

For each installed module, it displays:

o the module name and nodes name on which it is installed

o the module state on the node

o a notification on state change if the user has allowed them, and the URL is https

or http://localhost

For a description, see section 3.4.2.

• (2) Click on to open the menu of global actions (start, stop…) on the module that

apply on all nodes (node1, node2 in the example).

http://host:9010/safekit-portal/en/monitoring

 The SafeKit web console

39 A2 38MC 05 61

For a description, see section 3.4.3.1.

• (3) Click on to open menu of actions (start, stop…) on the module that applies

only to the node (node1 in the example).

For a description, see section 3.4.3.2.

• (4) Click on the node panel (mirror>node1 in the example) to open details for the

module on this node (logs, resources…). Since SafeKit 8.2.2, Click instead on to

open/close the details.

For a description, see section 3.4.4.

• (5) Click on to open/close the module states timeline on all nodes where it is

installed. Available since SafeKit 8.2.2.

For a description, see section 3.4.5.

3.4.2 Module state

The module is represented real-time display of its synthetic and detailed states on the

left and right panels.

3.4.2.1 Synthetic state

The console displays one of the following synthetic states for the module on the node:

STOP (NotReady)(red) Module stopped (ready for starting)

WAIT (Transient)(orange) Transient state of the module

ALONE (Transient)(orange) Transient state of a mirror module, primary

without secondary

ALONE (Ready)(green) Stable state of a mirror module, primary

without secondary

PRIM (Transient)(orange) Transient state of a mirror module, primary

with secondary

PRIM (Ready)(green) Stable state of a mirror module, primary with

secondary

SECOND (Transient)(orange) Transient state of a mirror module, secondary

with primary, during the synchronization of

replicated directories

SECOND (Ready)(green) Stable state of a mirror module, secondary

with primary

UP (Transient)(orange) Transient state of a farm module

SafeKit User's Guide

62 39 A2 38MC 05

UP (Ready)(green) Stable state of a farm module

WAIT (NotReady) (red) Blocked state of the module, waiting for one or

more resources

NOT CONFIGURED (grey) Installed module but not configured

ERROR (red) The node did not respond within the given

time limit.

This may be due to an incorrect address, a network or server failure, a misconfigured

web browser or firewall, or the SafeKit web service being stopped on the node (see

section 7.1). It may also be due to the temporary unavailability of the connection

node. In this case, reload the console from another SafeKit node.

For details on state changes of a mirror module, see section 5.2.

For details on state changes of a farm module, see section 6.2.

3.4.2.2 Detailed state

It is the state of the main resources or failover rules.

uptodate Replicated directories of the mirror module are uptodate

 Replicated directories of the mirror module are not uptodate

not uptodate

 The mirror module is in degraded mode described in section 7.6

 degraded

50%, 100% The network load share of the farm module (e.g. 50% or 100% with

2 nodes)

 No load share taken by the farm module

 0%

 The module applied the failover rule (e.g., the rule named

c_checkfile c_checkfile) which triggers the actions restart, stop,

stopstart, or wait on the module due to a resource going down.

View section 13.18.4.2 for details on failover rules. To analyze the

issue, read the logs and resource statuses as described below.

 The SafeKit web console

39 A2 38MC 05 63

 The module is in state ERROR (red)

connection The node did not respond within the given time limit

 error

3.4.3 Module control menus

3.4.3.1 Global menu

The actions of global menu apply to all nodes where the module is configured.

In the example below, actions apply to the module mirror on node1 and node2.

• (1) Click on to open the module's global actions menu.

• Click on “Start” to start the module on all nodes.

For mirror module, the node with the up-to-date replicated data is started as primary.

• Click on “Stop” to stop the module on all nodes.

For mirror module, the node that is secondary is stopped first to avoid unnecessary

failover.

• Click on “Debug” for debug and support as described in section 3.5.

3.4.3.2 Local menu

The actions of local menu apply only to the selected node.

3.4.3.2.1 Control a mirror module

In the example below, actions apply to the module mirror on node1.

SafeKit User's Guide

64 39 A2 38MC 05

• (1) Click on to open module's local actions menu on the desired node (e.g. node1).

• Click on “Start” to start the module on the node.

For mirror module, the node is started as primary when replicated data are up-to-

date. Otherwise, it is started as secondary. For details, see section 5.5.

• Click on “Stop” to stop the module on the node.

• Click on “Restart” to restart the module on the node.

It only executes only stop then start scripts to locally restart the application without

leading to a failover.

• Use “Force start” submenu when you need to decide if the node should start primary

or secondary:

o Select “Force start As Primary” to force the module to start as primary on this

node.

For instance, on the 1st start of a mirror module as described in section 5.3, you

must “Force start As primary” the node which has the up-to-date replicated

folders.

o Select “Force Start As secondary” to force the module to start as secondary on

this node.

Data synchronization can be optimized based on the module's last internal state.

o Select “Force Start As secondary with full data synchronization” to start the

module on this node as a secondary and to force a complete copy of the replicated

data.

• Click on “Disable/enable” to control error detection as described in section 3.4.3.2.3.

• Click on “Debug” to download module logs or snapshots from this node rather than

from all nodes as described in section 3.5.

To understand and check the correct behavior of a mirror module, see section 5. To test

it, see section 4.

3.4.3.2.2 Control farm module

In the example below, actions apply to the module farm on node2.

 The SafeKit web console

39 A2 38MC 05 65

• (1) Click on to open module's local actions menu on the desired node (e.g. node2).

• Click on “Start” to start the module on the node.

• Click on “Stop” to stop the module on the node.

• Click on “Restart” to restart the module on the node.

It only executes only stop then start scripts to restart the application without leading

to a failover.

• Click on “Disable/enable” to control error detection as described in section 3.4.3.2.3.

• Click on “Debug” to download module logs or snapshots from this node rather than

from all nodes as described in section 3.5.

To understand and check the correct behavior of a farm module, see section 6. To

continue the tests, see section 4.

3.4.3.2.3 Control checkers or processes/services monitoring

To avoid false error detection and automatic failover on application maintenance, you can

disable configured checkers (TCP, ping, custom….) or processes/services monitoring.

Once the maintenance is completed, they can be safely re-enabled. These actions can be

applied while the module is started/stopped and are not reset when the module stops-

starts.

In the example below, actions apply to the module mirror on node1.

SafeKit User's Guide

66 39 A2 38MC 05

• (1) Click on to open the module's local actions menu on the desired node (e.g.

node1).

• (2) Click on “Disable/enable” to open the submenu.

• (3) Click on “Checkers” or “Processes/services monitoring” to open the submenu.

• (4) Click on “Disable” to disable the error detection

This disables all checkers (TCP, ping, custom….) or processes/services monitoring

configured for the module.

• (4) Click on “Enable” to re-enable error detection by checkers or processes/services

monitoring.

3.4.4 Module details

You can display details for a module on one node:

• Directly via the URL http://host:9010/console/en/monitoring

/modules/AM/nodes/node (replace AM by the module name and node by the node

name)

Or

• By navigating the console via “Monitoring/Click on for the module>node”

The selected module>node is highlighted with a blue color.

In the example, the detail for the module mirror on node1 is displayed.

http://host:9010/safekit-portal/en/monitoring%20/modules/AM/nodes/node
http://host:9010/safekit-portal/en/monitoring%20/modules/AM/nodes/node

 The SafeKit web console

39 A2 38MC 05 67

• Click on to open/close details for the module on this node (logs, resources…).

• Click on “Logs” tab to visualize the module logs.

• Click on “Resources” tab to visualize the module resources.

• Click on “Information” tab to visualize information on the node: networks name and

addresses defined in the cluster configuration, SafeKit version, license key,

hostname, OS.

3.4.4.1 Module logs

You can display logs of a module on one node:

• Directly via the URL http://host:9010/console/en/monitoring

/modules/AM/nodes/node/logs (replace AM by the module name and node by the

node name)

Or

• By navigating the console via “Monitoring/Click on the module>node/Logs tab”

The left panel displays in real-time the non verbose module log for the selected

module>node.

http://host:9010/safekit-portal/en/monitoring%20/modules/AM/nodes/node
http://host:9010/safekit-portal/en/monitoring%20/modules/AM/nodes/node

SafeKit User's Guide

68 39 A2 38MC 05

• Click on to resume/suspend the view in real time of the module log.

Refer to section 7 for an explanation of main messages.

• Click on to download the module log (verbose or not verbose).

• Select the message type to view:

• C(ritical) messages such as error detection

• E(vent) messages such as local and remote states

• U(ser) messages when the user run action on the module

• S(cript) messages when module scripts are executed

• Click on a message to display the verbose module log or the script log (output of

scripts) into the log detail into the right panel.

3.4.4.1.1 Script log

To display the script log, click on the S(cript) message whose output you want to view.

 The SafeKit web console

39 A2 38MC 05 69

• (1) Click the S(cript) message consisting of:

o the date and time of the execution of the script

o the name of the script executed

o the name of the name of the corresponding userlog file

The userlog file content is displayed into the right panel. In the example, it is the

content of the file SAFEVAR/modules/AM/userlog_2024-02-12T091410_start_prim.ulog

(where AM is the module name)

3.4.4.1.2 Verbose log

To display the verbose module log, click on a message other than S(cript).

SafeKit User's Guide

70 39 A2 38MC 05

• (1) Click the message consisting of:

o the date and time of the event

o the module message

• All verbose messages between the selected message and the previous one in the

table are displayed in the right-hand panel.

3.4.4.2 Module resources

You can display resources of a module on one node:

• Directly via the URL http://host:9010/console/en/monitoring

/modules/AM/nodes/node/resources (replace AM by the module name and node by

the node name)

Or

• By navigating the console via “Monitoring/Click on the module>node/Resources

tab”

3.4.4.2.1 Ressources state

The left panel displays in real-time the current state of the resources for the selected

module>node.

• (1) Select the group of resources to view:

http://host:9010/safekit-portal/en/monitoring%20/modules/AM/nodes/node
http://host:9010/safekit-portal/en/monitoring%20/modules/AM/nodes/node

 The SafeKit web console

39 A2 38MC 05 71

• Module status

Main resources, especially the ones of files replication for a

mirror module

• Checkers

Ressources set by checkers

• File replication

File replication-specific resources that demonstrate

synchronization progress

• All resources

• Click on a resource to display its value over time in the right panel. This history may

be empty for some resources (unassigned or cleaned).

Resource’s state is controlled by the failover machine to trigger a failover on failures (see

section 13.18).

3.4.4.2.2 Resource’s state value history

To display a resource's value history, click on the resource you're interested in.

• (1) Click on the line consisting of:

o the last date the resource was assigned

o the name and category of the resource. The full resource name is like

category.name (custom.checkfile in the example).

The history of resource values is displayed in the right panel. In the example, this is the

custom.checkfile resource corresponding to a resource assigned by a custom checker.

3.4.5 Module states timeline

Since SafeKit 8.2.2, you can display the module states timeline:

• By navigating the console via “Monitoring/Click on for the module”

SafeKit User's Guide

72 39 A2 38MC 05

This provides a global view of the module's state on the cluster. Be aware:

• that the clocks of the two nodes must be synchronized for the mapping of state

changes to be meaningful

• it displays a reverse timeline of the module states on all nodes over time, by starting

by the newest date.

• Click on to open/close the timeline. The timeline displayed is the one available at

the time of loading.

• Click on to refresh the timeline with the latest state changes.

• Click on a state change event to display the module log for the node starting at this

date

3.5 Snapshots or logs of module for debug and support

When the problem is not easily identifiable, it is recommended to download logs or

snapshots of the module on all nodes as described below. Snapshots allows an offline and

in-depth analysis of the module and node status as described in section 7.17. If this

analysis fails, send snapshots to support as described in section 8.

In the following example, the module mirror is configured on node1 and node2. Note

that a snapshot can be downloaded in any state of the module.

 The SafeKit web console

39 A2 38MC 05 73

• (1) Click on to open the global menu of the module.

• (2) Click on “Debug” to open the debug submenu.

• (3) Click on “Download the snapshots” to create and download the snapshot of the

module for each node.

The web console relies on the web browser's download settings to save the snapshot

on the workstation. Some browsers may ask confirmation to download many files and

zip files.

The snapshot generation command generates a new dump and creates a .zip file

containing the last 3 dumps and the last 3 module configurations.

In this example, it downloads 2 snapshots : snapshot_node1_mirror.zip and

snapshot_node2_mirror.zip.

• Click on “Download the logs” to download the module log (verbose or not) for each

node.

• In case of file replication issues, click on “Generate the dump files” at the time the

problem occurs.

The dump contains the module logs and information on the system and SafeKit state

at the time of the dump. It is generated on the server side into

SAFEVAR/snapshot/modules/AM/dump_AAAA_MM_DD_hh_mm_ss.

Since SafeKit 8.2.4, the zips generated for snapshots are protected by the

password safekit. This allows the snapshot to be received in its entirety

when sent via email.

3.6 Secure access to the web console

SafeKit offers different security policies for the web console that are implemented by

modifying the SafeKit web service configuration. These configurations also offer role

management:

Admin role

This role grants all administrative rights by allowing access to

Configuration and Monitoring in the navigation sidebar

Control role

This role grants monitoring and control rights by allowing access only

to Monitoring in the navigation sidebar

SafeKit User's Guide

74 39 A2 38MC 05

Monitor role

This role grants only monitoring rights, prohibiting actions on modules

(start, stop…) in Monitoring in the navigation sidebar.

SafeKit provides different setups for the web service to enhance the security of the

SafeKit web console. The predefined setups are listed below from least secure to most

secure:

• HTTP. Same role for all users without authentication

This solution can only be implemented only in HTTP and is not compatible with user

authentication methods. It is intended to be used for troubleshooting only.

• HTTP/HTTPS with user authentication based on Apache files and optional role

management

It relies on Apache files to store username/password for authenticating users and,

optionally, to store the associated role for restricting their access. To connect to the

console, the user must enter the username and password as configured with the

Apache mechanisms.

This is the default active configuration, applied for HTTP and initialized with a single

admin user with the Admin role. The default setup can be extended to add users or to

switch to HTTPS.

• HTTP/HTTPS with user authentication based on LDAP/AD authentication. Optional role

management

It relies on LDAP/AD authentication server to authenticate users and, optionally,

restricts their access based on roles. To connect to the console, the user must enter

the username and password as configured into the LDAP/AD server. It supports HTTP

or HTTPS.

• HTTPS with user authentication based on OpenId Connect authentication. Optional

role management

It relies on OpenID Identity Provider server to authenticate users and, optionally,

restricts their access based on roles. To connect to the console, the user must enter

the username and password as configured into the Identity Provider server. Since

SafeKit 8.2.3, it supports only HTTPS.

To implement them, refer to the section 11.

39 A2 38MC 05 75

4. Tests

 Section 4.1 “Installation and tests after boot”

 Section 4.2 “Tests of a mirror module”

 Section 4.3 “Tests of a farm module”

 Section 4.4 “Tests of checkers common to mirror and farm”

The following tests help to better understand how SafeKit works and ensure that the

deployed solution returns the expected results. They can be used as a basis for the

acceptance testing at a client's site.

Subsequently, analysis of test results may require consulting the module log, the scripts

log (which contains the output of module scripts) and the state of module resources. To

read these logs and resources, see section 7.3.

4.1 Installation and tests after boot

4.1.1 Test package installation

Replace below node1 by the node name and AM by the module name.

• safekit -p executed on the nodes returns among other values, the value of SAFE,

the SafeKit root installation path, and SAFEVAR, the SafeKit working directory:

o in Windows

SAFE=C:\safekit if %SYSTEMDRIVE%=C:
SAFEVAR=C:\safekit\var

o in Linux
SAFE="/opt/safekit"

SAFEVAR="/var/safekit"

For details, see section 10.1.

• Editing userconfig.xml of a mirror(/farm) module and its scripts

start_prim/start_both, stop_prim/stop_both is made with:

o the web console at /console/en/configuration/modules/AM/config

o under the directory SAFE/modules/AM on the node1

• Module log and scripts log (that contains module scripts output) for the module on

one node may be analyzed with :

o the web console at /console/en/monitoring/nodes/node1/modules/AM/logs

o the command executed on node1

safekit logview -m AM for the module log

o on node1, into files
SAFEVAR/modules/AM/userlog_<year>_<month>_<day>T<time>_<script

name>.ulog for the scripts logs (output messages of the scripts)

http://safekit-portal/en/monitoring/nodes/node1/modules/mirror/logs

SafeKit User's Guide

76 39 A2 38MC 05

4.1.2 Test license and version

safekit level returns:

Host : <hostname>
OS : <OS version>
SafeKit : <SafeKit version>
License : Demo (No license)| Invalid Product | Invalid Host | … Expiration… | <license id> for
<hostname>…
or License : Expired license

• "Demo (No license)"

means no license into SAFE/conf/ ; the product stops every 3 days

• "Invalid Product"

means an expired license in SAFE/conf/license.txt

• "Invalid Host"

means no valid hostname in SAFE/conf/license.txt

• " …Expiration…"

 means a temporary key

• "<license id> for <hostname>"

means a permanent license

Go to http://www.evidian.com/safekit/requestevalkey.php to get a temporary key of one

month for any OS or any hostname.

Go to https://support.evidian.com to get a permanent key based on the hostname and

OS.

4.1.3 Test SafeKit services and modules after boot

In Windows, see also section 10.4.

Test safeadmin service

safeadmin service must be automatically started at boot. To check its state:

In

Windows

1. Open a PowerShell console as administrator

2. Run Get-Service -name safeadmin

Status Name DisplayName
------ ---- -----------
Running safeadmin safeadmin

In Linux

1. Open a Shell console as root

2. Run systemctl status safeadmin

Redirecting to /bin/systemctl status safeadmin.service
● safeadmin.service - The SafeKit Administration Daemon
 Loaded: loaded (/usr/lib/systemd/system/safeadmin.service; enabled; vendor
preset: disabled)
 Active: active (running) since Tue 2024-11-12 17:30:56 CET; 20h ago
…

http://www.evidian.com/safekit/requestevalkey.php
https://support.evidian.com/

 Tests

39 A2 38MC 05 77

When safeadmin service is not running, all safekit commands fail and return for

example:

safekit level

Waiting for safeadmin

Error: safeadmin administrator daemon not running

Refer to section 9.1.1, for starting safeadmin service.

Test safewebserver service

By default, safewebserver service must be automatically started at boot. To check its

state:

In

Windows

1. Open a PowerShell console as administrator

2. Run Get-Service -name safewebserver

Status Name DisplayName
------ ---- -----------
Running safewebserver safewebserver

In Linux

1. Open a Shell console as root

2. Run systemctl status safewebserver

systemctl status safewebserver
Redirecting to /bin/systemctl status safewebserver.service
● safewebserver.service - SafeKit Apache Server
 Loaded: loaded (/usr/lib/systemd/system/safewebserver.service; enabled;
vendor preset: disabled)
 Active: active (running) since Wed 2024-11-13 11:01:31 CET; 2h 58min ago
…

When safewebserver service is not running, the following features are unavailable:

• the SafeKit web console that displays:

• the module checker

• the distributed command line interface that returns for example:

safekit -H "*" level

---------------- Server=https://10.0.0.107:9453 ----------------
curl: (7) Failed to connect to 10.0.0.107 port 9453 after 1022 ms: Couldn't connect to server

SafeKit User's Guide

78 39 A2 38MC 05

---------------- Server=https://10.0.0.108:9453 ----------------
curl: (28) Failed to connect to 10.0.0.108 port 9453 after 21024 ms: Couldn't connect to server

Refer to section 9.1.2, for starting safewebserver service.

Test SNMP service

SNMP monitoring is not enabled by default. Refer to section 10.10, to enable it.

In Windows, it relies on Net-SNMP Agent service. In Linux, it relies on the standard

snmpd service. To check its state:

In

Windows

1. Open a PowerShell console as administrator

2. Run Get-Service -name "Net-SNMP Agent"

Status Name DisplayName
------ ---- -----------
Running Net-SNMP Agent Net-SNMP Agent

In Linux

1. Open a Shell console as root

2. Run systemctl status snmpd

systemctl status snmpd
Redirecting to /bin/systemctl status snmpd.service
● snmpd.service - …
Active: active (running) since Wed 2024-11-13 11:01:31 CET; 2h 58min ago
…

When the service is not running, the SNMP monitoring is unavailable.

Refer to section 9.1.4, for starting the service.

Test modules

• safekit boot status displays start-up ("on") or not ("off") of modules at boot

• safekit state displays state of all configured modules: STOP (mirror or farm), WAIT

(mirror or farm), ALONE (mirror), PRIM (mirror), SECOND (mirror), UP (farm)

• check processes of a module: see section 10.2.

To list the processes of the AM module, execute:

safekit -r processtree list all AM

This command returns all processes with AM in arguments.

• safekit module listid displays name of installed modules with their ids: id of a

module must be the same on all servers

4.1.4 Test start of SafeKit web console

For details on the web console, refer to section 3.

• connect a web browser to http://<server IP>:9010

• the web console home page is displayed

 Tests

39 A2 38MC 05 79

4.2 Tests of a mirror module

4.2.1 Test first start of a mirror module on 2 servers STOP

(NotReady)

On the first start of the module after its configuration:

• message in the logs of both servers (to read logs, see section 7.3)

"Action start called by admin@<IP>via<IP>/SYSTEM/root"

• the module goes to state WAIT (NotReady)and WAIT (NotReady)on both

servers with in the log

"Action wait from failover rule rfs_notuptodate_server"
"Data may be not uptodate for replicated directories (wait for the start of the remote server)"
"If you are sure that this server has valid data, run safekit stop, then safekit prim to force start as
primary"

For the first start of a mirror module with replicated directories, the user must force the

start as primary the node with the uptodate data. Refer to section 5.3.

4.2.2 Test start of a mirror module on 2 servers STOP (NotReady)

For subsequent starts:

• message in the logs of both servers (to read logs, see section 7.3)

"Action start called by admin@<IP>via<IP>/SYSTEM/root"

• the module goes to the stable state PRIM (Ready)and SECOND (Ready)on both

servers with in the first log

"Remote state SECOND Ready"
"Local state PRIM Ready "

• and in the other log

"Local state SECOND Ready "
"Remote state PRIM Ready "

• application is started in the start_prim script of the module on the PRIM server with

message in the log

"Script start_prim"

4.2.3 Test stop of a mirror module on the server PRIM (Ready)

On the stopping node:

• message in the log of the stopped node (to read logs, see section 7.3)

"Action stop called by admin@<IP>/SYSTEM/root"

• the stopped node runs the stop_prim script of the module which stops the application

on the server with message in the log:

"Script stop_prim"

• the module becomes STOP (NotReady) with messages in the log:

"Local state STOP NotReady"

SafeKit User's Guide

80 39 A2 38MC 05

On the other node:

• the node runs a failover with the message in the log:

"Action alone called by heart : remote stop"

• the application is started with the start_prim script with the message in the log:

"Script start_prim"

• the module becomes ALONE (Ready) with the message in the log:

"Local state ALONE Ready"

4.2.4 Test start of a mirror module on the server STOP (NotReady)

Start the module on a node while the other node is ALONE (Ready).

• message in the log of the starting module (to read logs, see section 7.3)

"Action start called by admin@<IP>/SYSTEM/root"

• the STOP (NotReady) module becomes SECOND (Ready)

• the module ALONE (Ready) becomes PRIM (Ready) and continues to execute the

application

4.2.5 Test restart of a mirror module on the server PRIM (Ready)

• message in the log of the server where the restart command is passed (to read logs,

see section 7.3)

"Action restart called by admin@<IP>/SYSTEM/root"

• the PRIM module becomes PRIM (Transient) and then becomes PRIM (Ready)

• the scripts of the module stop_prim/start_prim are executed on the PRIM and

restarts locally the application on the server with messages in the log:

"Script stop_prim"
"Script start_prim"

• the other module on the other server stays SECOND (Ready)

4.2.6 Test virtual IP address of a mirror module

Mirror module in the state PRIM

(Ready) on node1 and SECOND (Ready)

on node2.

userconfig.xml:

<vip>

 <interface_list>

 <interface check="on">

 <real_interface>

 <virtual_addr addr="virtip"

 where="one_side_alias"

 check="on"/>

 </real_interface>

 </interface>

 </interface_list>

</vip>

1. On node1, ipconfig /all (Windows)

or ip addr show (Linux) returns

virtip as an alias on the network

interface.

On the external workstation (or

server), the 3 pings respond.

On the external workstation (or

server) in the same LAN, virtip is

mapped to the same MAC address as

node1_ip_address

arp -a
node1_ip_address 00-0c-29-0a-5c-fc
node2_ip_address 00-0c-29-26-44-93

 Tests

39 A2 38MC 05 81

1. On an external workstation (or server)

in the same LAN, ping both physical IP

addresses + virtual IP address:

ping node1_ip_address
ping node2_ip_address
ping virtip
arp -a

2. safekit stopstart -m AM on the

primary server (where AM is the

module name)

3. On the external workstation (or

server)

ping node1_ip_address
ping node2_ip_address
ping virtip
arp -a

Note: redo the ping to virtip before

looking at the ARP table because the

entry may be marked obsolete and

refreshes only after ping

virtip 00-0c-29-0a-5c-fc

2. After the stopstart, SECOND

(Ready) on node1 server and PRIM

(Ready) on node2 server

In the verbose log of new primary,

message:

"Virtual IP <virtip of mirror> set"

3. On node2, ipconfig /all (Windows)

or ip addr show (Linux) returns

virtip as an alias on the network

interface

On the external workstation (or

server), the 3 pings respond.

On the external workstation (or

server), virtip is mapped to the

same MAC address as

node2_ip_address

arp -a
node1_ip_address 00-0c-29-0a-5c-fc
node2_ip_address 00-0c-29-26-44-93
virtip 00-0c-29-26-44-93

4.2.7 Test file replication of a mirror module

Mirror module in the state PRIM

(Ready) on node1 server and SECOND

(Ready) on node2 server.

userconfig.xml in Windows:

<rfs>

 <replicated dir="c:\replicated"

mode="read_only" />

</rfs>

userconfig.xml in Linux:

<rfs>

 <replicated dir="/replicated"

mode="read_only" />

</rfs>

1. On the server PRIM (Ready), go to

/replicated and create a file file1.txt

2. On the server SECOND (Ready), go to

/replicated and try to delete file1.txt

1. file1.txt has been replicated on

SECOND (Ready) under /replicated

2. Failure because the /replicated

directory is read-only on the server

SECOND (Ready)

3. file2.txt is not replicated in /replicated

of the server STOP (NotReady)

4. file2.txt is reintegrated on the

restarted server. During the phase of

reintegration, the server is SECOND
(Transient)

In the log of reintegrated Linux server,

message:

"Updating directory tree from
/replicated_For_SafeKit_Replication"

In the log of reintegrated Windows

server, message:

"Updating directory tree from c:\replicated"

SafeKit User's Guide

82 39 A2 38MC 05

3. Stop the server PRIM (Ready) and

wait for STOP (NotReady). Then go to

the other server which is ALONE

(Ready) and create a new file file2.txt

4. Restart the server STOP (NotReady)

and wait for SECOND (Ready).

And at the end of /replicated

reintegration, if at least 1 file with

modified data has been reintegrated

from primary server to secondary

server, message

"Copied <reintegration statistics>"
"Reintegration ended (synchronize)"

This message gives statistics for the

reintegrated directory: reintegrated

size, number of files, time, and

throughput on the network in KB/sec.

Note: reintegrate a file larger than 100

MB to have reliable statistics

At the end of reintegration, the server

is SECOND (Ready).

4.2.8 Test shutdown of the server PRIM (Ready)

• on Windows, check that the special procedure to stop modules at shutdown has been

applied. Refer to section 10.4.

• make a shutdown of the server PRIM (Ready)

• check in the log of server SECOND (Ready), message

"Action alone called by heart : remote stop"

• the server SECOND (Ready) becomes ALONE (Ready); application in the

start_prim script of the module is started on the ALONE server with the message in

the log

"Script start_prim"

• on timeout in the SafeKit console, the old server PRIM (Ready) becomes ERROR

(connection error)

• after reboot of the stopped server, check that the OS shutdown has really called a

shutdown of the module

"Action shutdown called by SYSTEM/root"

• Check that the application stop_prim script has been executed with the message

"Script stop_prim"

• And check that the module has been completely stopped before shutting down the

server with the last message

"Local state STOP NotReady"

• after reboot of stopped server, if the module is started automatically at boot

(safekit boot status), message in the log

"Action start called at boot time"

• after a start of the module on the stopped server, the module becomes

SECOND (Ready) on this server and PRIM (Ready) on the other server

 Tests

39 A2 38MC 05 83

4.2.9 Test power-off of the server PRIM (Ready)

In the event of a power outage, the module is not stopped properly as it would be during

a server shutdown. Failover is triggered by the loss of heartbeats rather than by

detecting the module stop.

userconfig.xml with 2 heartbeats:

<heart>

 <heartbeat name="default" />

 <heartbeat name="private"

 ident="flow" />

</heart>

Note: If you want to make a test with

double simultaneous electrical fault on

both servers, check that <rfs

async="none"> is set in userconfig.xml.

For more information, see section 13.6.3.

• in the log of the server

SECOND (Ready), message

"Resource heartbeat.default set to down by
heart"
"Resource heartbeat.flow set to down by
heart"
"Remote state UNKNOWN"
"Action alone called by heart : no heartbeat"

• messages appear within 30 seconds

after the power-off (if no specified

timeout configured for <heart>)

• the server SECOND (Ready) becomes

ALONE (Ready); the application in

the start_prim script of the module is

restarted on the ALONE server with the

message in its log

"Script start_prim"

• on SafeKit console timeout, the former

server PRIM (Ready) becomes
ERROR (connection error)

• after reboot of stopped server, if the

module is started automatically at

boot (safekit boot status),

message in the log

"Action start called at boot time"

• after restart of the module on the

stopped server, the module becomes

SECOND (Ready) on this server and

PRIM (Ready) on the other server

4.2.10 Test split-brain with a mirror module

Split-brain occurs in situation of network isolation between two SafeKit servers. Each

server becomes primary ALONE and runs the application. At return of split-brain, a

sacrifice must be made by shutting down the application on one of the two servers.

Mirror module in the state PRIM

(Ready) and SECOND (Ready)

userconfig.xml:

<heart>

 <heartbeat name="default" />

 <heartbeat name="repli" ident="flow"

1. After network isolation of both servers,

all heartbeats are lost. In the logs of

both servers,

"Resource heartbeat.default set to down by
heart"
"Resource heartbeat.flow set to down by
heart"

SafeKit User's Guide

84 39 A2 38MC 05

/>

</heart>

+

on Windows to manage the IP conflict on

the virtual IP address virtip

<vip>

 <interface_list>

 <interface check="on"

arpreroute="on">

 <real_interface>

 <virtual_addr addr="192.168.1.10"

 where="one_side_alias"/>

 </real_interface>

 </interface>

 </interface_list>

</vip>

To obtain the split-brain, check that there

are no checkers in userconfig.xml that

can detect the network isolation: no

<interface check="on">, no <ping>

checker

1. disconnect at the same time, networks

default and repli

2. reconnect networks

"Remote state UNKNOWN"
"Local state ALONE Ready "

Split-brain case: both servers are

ALONE (Ready) and run the

application.

2. When reconnecting networks, sacrifice

of one ALONE server: the former

SECOND server

Log of the former PRIM not sacrificed:

"Remote state ALONE Ready"
"Split brain recovery: staying alone"

Log of the former SECOND sacrificed:

"Remote state ALONE Ready"
"Split brain recovery: exiting alone"
"Script stop_prim"

The server performs a stopstart:

stop of the application with stop_prim

then reintegration of replicated files

from the other server.

In Windows, upon reconnection, a

conflict may occur with the virtual IP

address, leading to the stop-start of

the module.

3. Come back to the stable state PRIM

(Ready) and SECOND (Ready) on

both servers as it was before split-

brain

Note: situation of split-brain in a mirror

module with file replication is not good.

Indeed, the sacrifice of the former

secondary server causes file reintegration

of this server from the primary one and

the loss of data stored on the secondary

during the split-brain situation.

For this reason, 2 heartbeats on two

physically separate networks are

recommended. Typically, a cable between

the two servers will allow (1) to avoid

split-brain with an additional heartbeat

network and (2) set the replication flow

on a separate network

4.2.11 Continue your mirror module tests with checkers

Go to section 4.4 for tests of checkers.

 Tests

39 A2 38MC 05 85

4.3 Tests of a farm module

4.3.1 Test start of a farm module on all servers STOP (NotReady)

• message in the logs of all servers (to read logs, see section 7.3)

"Action start called by admin@<IP>/SYSTEM/root"

• the module goes to UP (Ready) on all servers

• the application is started in the start_both script of the module on all servers with

the message in the log

"Script start_both"

4.3.2 Test stop of a farm module on one server UP (Ready)

• message in the log of the stopped server (to read logs, see section 7.3)

"Action stop called by admin@<IP>/SYSTEM/root"

• the stopped module runs the stop_both script which stops the application on this

server and with message in the log

"Script stop_both"

• the stopped module becomes STOP (NotReady) with messages in the log:

"Local state STOP NotReady"

• the other servers stay UP (Ready) and continue to run the application

• restart the module STOP (NotReady) with the start command

4.3.3 Test restart of a farm module on one server UP(Ready)

• message in the log of the module where the restart command is passed (to read logs,

see section 7.3)

"Action restart called by admin@<IP>/SYSTEM/root"

• the restarted module becomes UP (Transient) then becomes UP (Ready)

• the module scripts stop_both/start_both are executed on the server to locally

restart the application with messages in the log

"Script stop_both"

"Script start_both"

4.3.4 Test virtual IP address of a farm module

4.3.4.1 Configuration with vmac_directed

Farm module in the UP (Ready) state on 2

servers node1 and node2

userconfig.xml with load balancing on the

safewebserver service (TCP port 9010):

<farm>

<lan name="default" />

</farm>

• In the verbose log of all servers:

"Virtual IP <virtip of farm> set"

• On the 2 servers, ipconfig /all

(Windows) or ip addr show

(Linux) returns virtip as an

alias on the network interface.

• On a remote workstation (or

server), the pings respond, and

SafeKit User's Guide

86 39 A2 38MC 05

<vip>

 <interface_list>

 <interface check="on">

 <virtual_interface type="vmac_directed">

 <virtual_addr addr="virtip"

where="alias" check="on"/>

 </virtual_interface>

 </interface>

 </interface_list>

<loadbalancing_list>

<group name="FarmProto">

 <rule port="9010" proto="tcp"

filter="on_port"/>

</group>

</loadbalancing_list>

</vip>

On a remote workstation (or server) in the

same LAN, ping of the 2 physical IP addresses

+ virtual IP + arp -a

ip1.20 is mapped with the MAC

address of one of the 2 servers:

ping node1_ip_address
ping node2_ip_address
ping virtip

arp -a
node1_ip_address 00-0c-29-0a-
5c-fc
node2_ip_address 00-0c-29-26-
44-93
virtip 00-0c-29-26-44-93

4.3.4.2 Configuration with vmac_invisible

Farm module in the UP (Ready) state on 2

servers node1 and node2

userconfig.xml with load balancing on the

safewebserver service (TCP port 9010):

<farm>

<lan name="default" />

</farm>

<vip>

 <interface_list>

 <interface check="on">

 <virtual_interface type="vmac_invisible"

>

 <virtual_addr addr="virtip"

where="alias" check="on"/>

 </virtual_interface>

 </interface>

 </interface_list>

<loadbalancing_list>

<group name="FarmProto">

 <rule port="9010" proto="tcp"

filter="on_port"/>

</group>

</loadbalancing_list>

</vip>

On a remote workstation (or server) in the

same LAN, ping of the 2 physical IP addresses

+ virtual IP + arp -a

• In the verbose log of all servers:

"Virtual IP <virtip of farm> set"

• On the 2 servers, ipconfig /all

(Windows) or ip addr show

(Linux) returns virtip as an

alias on the network interface.

• On a remote workstation (or

server), the pings respond. And

virtip is mapped with the

invisible virtual MAC address:

ping node1_ip_address
ping node2_ip_address
ping virtip

arp -a
node1_ip_address 00-0c-29-0a-
5c-fc
node2_ip_address 00-0c-29-26-
44-93
virtip 5a-fe-c0-a8-38-14

• Note: by default, the virtual MAC

address is a unicast Ethernet

address built with 5A:FE (SAFE)

and the virtual IP address in

hexadecimal

 Tests

39 A2 38MC 05 87

4.3.5 Test TCP load balancing on a virtual IP address

Farm module in the state

UP (Ready) on the 2 servers

node1, node2.

Same load balancing configuration

in userconfig.xml as the previous

test.

On a remote workstation:

1. Connect a browser to

http://virtip:9010/safekit/mosai

c.html, then fill the module

name and on Mosaic Test.

node1, node2 respond

2. safekit stop -m AM on node2

(where AM is the module name).

Reload the URL: node1

responds

Special command to check the load

balancing bitmap for port 9010 on

each node UP (Ready):

safekit -r vip_if_ctrl -l

An entry in the bitmap of 256 bits

must be 1 on a single server.

Furthermore, the 256 bits are fairly

distributed in the bitmaps of all

servers UP (Ready) (if no

definition of power inside

userconfig.xml)

1. UP (Ready) on the 2 servers: load

balancing of TCP sessions between node1,

node2 when loading the URL

o In the resources of the module, for node1

and node2: FarmProto_0 50%

o In the verbose logs of node1 and node2:

"farm membership: node1 node2 (group
FarmProto_0)"
"farm load: 128/256 (group FarmProto_0)"

128/256: 128 bits on 256 are managed

by each server

o safekit -r vip_if_ctrl -l on node1

and node2.

With type="vmac_directed"

Bitmap node1:
01010101:01010101:01010101:01010101:ffffffff:ffffffff
:ffffffff:ffffffff
Bitmap node2:
ffffffff:ffffffff:ffffffff:ffffffff:02020202:02020202:0202020
2:02020202

01 and 02 corresponds to the node

numbers that reply.

With type="vmac_invisible"

Bitmap node1:
00000000:00000000:00000000:00000000:ffffffff:ffffffff
:ffffffff:ffffffff
Bitmap node2:
ffffffff:ffffffff:ffffffff:ffffffff:00000000:00000000:0000000
0:0000000

Bits are fairly distributed between both

servers

2. STOP (NotReady) on node2: TCP sessions

served only by node1 when loading the URL

o In the resources of the module, for

node1: FarmProto_0 100%

o In the verbose log of node1:

"farm membership: node1 (group
FarmProto_0)"
"farm load: 256/256 (group FarmProto_0)"

256/256: all the bits are managed by

node1

o safekit -r vip_if_ctrl -l on node1:

Bitmap:
ffffffff:ffffffff:ffffffff:ffffffff:ffffffff:ffffffff:ffffffff:ffffffff

http://virtip:9010/safekit/mosaic.html
http://virtip:9010/safekit/mosaic.html

SafeKit User's Guide

88 39 A2 38MC 05

All the bits are managed by node 1

4.3.6 Test split-brain with a farm module

Split-brain occurs in case of network isolation between SafeKit servers.

Farm module is UP (Ready) on

the servers node1 and node2.

Same configuration of load

balancing in userconfig.xml as

the previous test. To get the

split-brain, check in

userconfig.xml that there are

no checkers that can detect

isolation: no <interface

check="on"> or <ping> checker

On the external workstation:

1. Connect a browser to

http://virtip:9010/safekit/mos

aic.html, then click on Mosaic

Test. node1 and node2

respond

2. disconnect the network

between node1 and node2.

Depending on the location

where the external console is,

node 1 responds or node 2

or

3. reconnect the network and

connect to URL

Same special command as in the

previous test to check the load

balancing bitmap for port 9010

on each node UP (Ready)

1. before split-brain, state UP (Ready) on

node1 and node2:

o In the resources of the module, for node1

and node2: FarmProto_0 50%

o In the verbose logs of node1 and node2:

"farm membership: node1 node2 (group
FarmProto_0)"
"farm load: 128/256 (group FarmProto_0)"

128/256: 128 bits on 256 are managed by

each server.

o safekit -r vip_if_ctrl -l on node1 and

node2:

With type="vmac_directed"

Bitmap node1:
01010101:01010101:01010101:01010101:ffffffff:ffffffff:fff
fffff:ffffffff
Bitmap node2:
ffffffff:ffffffff:ffffffff:ffffffff:02020202:02020202:02020202:0
2020202

01 and 02 corresponds to the node

numbers that reply.

With type="vmac_invisible"

Bitmap node1:
00000000:00000000:00000000:00000000:ffffffff:ffffffff:fff
fffff:ffffffff
Bitmap node2:
ffffffff:ffffffff:ffffffff:ffffffff:00000000:00000000:00000000:0
000000

Bits are fairly distributed between both

servers

2. after isolation of servers, split-brain:

o In the resources of the module, for node1

and node2: FarmProto_0 100%

o In the verbose log of node1:

"farm membership: node1 (group FarmProto_0)"
"farm load: 256/256 (group FarmProto_0)"

256/256: all the bits are managed by node1

o In the verbose log of node2:

"farm membership: node2 (group FarmProto_0)"
"farm load: 256/256 (group FarmProto_0)"

http://virtip:9010/safekit/mosaic.html
http://virtip:9010/safekit/mosaic.html

 Tests

39 A2 38MC 05 89

256/256: all the bits are managed by node2

o safekit -r vip_if_ctrl -l on node1 and

node2:

Bitmap:
ffffffff:ffffffff:ffffffff:ffffffff:ffffffff:ffffffff:ffffffff:ffffffff

3. after split-brain when network is reconnected,

the same messages can be found in the log and

the same bitmaps as those before split-brain.

Note: the default behavior of farm in situation of

split-brain is good. The recommendation is to put

in userconfig.xml a monitoring network <lan>

</lan> where the virtual IP address is.

The messages in the log and the result of

vip_if_ctrl are slightly different depending on the

type vmac_directed or vmac_invisible.

4.3.7 Test compatibility of the network with invisible MAC address
(vmac_invisible)

Network prerequisite

A unicast MAC Ethernet address 5a-

fe-xx-xx-xx-xx is associated with

the virtual IP address virtip of a

farm module. It is never presented

by SafeKit servers as source

Ethernet address (invisible MAC).

Switches cannot locate this

address. When they follow a packet

to the destination MAC address 5a-

fe-xx-xx-xx-xx, they must

broadcast the packet on all ports of

the LAN or VLAN where the virtual

IP address is (flooding). All servers

in the farm therefore receive

packets destined to the virtual MAC

address 5a-fe-xx-xx-xx-xx.

Note that this prerequisite does not

exist for a mirror module (see

section 4.2.6)

Server prerequisite

The packets are captured by

Ethernet cards set in promiscuous

mode by SafeKit. And the packets

are filtered by the module kernel

<vip> according to the load

balancing bitmap. To make a test,

you need network monitor tool.

1. all servers are UP (Ready)

2. the network monitoring is started on each

server with a filter on virtip

3. an external workstation sends a single ping

to the virtual IP address with ping -n (or -
c) 1 virtip

o 1 packet sent and received by all servers

"ICMP: Echo: From extip To virtip"

o there must be as many packets

"ICMP: Echo Reply: To extip From virtip"

as there are servers UP (Ready)

4. if it is not the case, check if options restrict

the "port flooding" in switches and prevent

the broadcast of "ICMP: Echo" to all servers

5. be careful: the "port flooding" restriction in

switches can occur after a certain number of

flooding (time, number of KB flooded): the

ping test must be repeated during several

hours by creating flooding to the virtual IP

address

6. Note: to avoid network monitoring tools, an

external Linux console can be used. The

Linux ping prints duplicate packets coming

from the 2 servers UP (Ready):

ping virtip
64 bytes from ip1.20 icmp_seq=1

SafeKit User's Guide

90 39 A2 38MC 05

Network monitoring on Windows

2003 (CD2):

1. install "Network Monitor Tools"

in "Management and Monitoring

Tools" (capture only packets in

source or destination of the

server)

2. Start / Network Monitor then

Capture Filter / Address Pairs /

virtip then Capture / Start then

"Stop and View" at the end of

capture

Network monitoring on Linux:

1. tcpdump host virtip

capture all network packets

64 bytes from ip1.20 icmp_seq=1 (DUP!)
64 bytes from ip1.20 icmp_seq=2
64 bytes from ip1.20 icmp_seq=2 (DUP!)...

This test may be carried out for several

minutes by storing the output of the ping in a

file and then ensuring that there was (DUP!)

all the time: date > /tmp/ping.txt ; ping
virtip >> /tmp/ping.txt

4.3.8 Test shutdown of a server UP (Ready)

• on Windows, check that the special procedure to stop modules at shutdown has been

performed. Refer to section 10.4.

• make a shutdown of a UP (Ready) server

• the other servers stay UP (Ready) and continue to run the application

• on timeout in the SafeKit console, the old server UP (Ready) becomes ERROR

(connection error)

• after reboot, check that shutdown of the OS has called a shutdown of the module

"Action shutdown called by SYSTEM"

• Check that the stop_both script which stops the application has been executed with

the message

"Script stop_both"

• And check that the module has been completely stopped before stopping the server

with the last message

"Local state STOP NotReady"

• after reboot of the stopped server, if the module is started automatically at boot

(safekit boot status), message in the log

"Action start called at boot time"

• after start-up of the module on the stopped server, the module becomes UP

(Ready) and it executes the start_both script which restarts the application on this

server with the message in the log

"Script start_both"

4.3.9 Test power-off of a server UP (Ready)

In the event of a power outage, the module is not stopped properly as it would be during

a server shutdown. Failover is triggered by the loss of heartbeats rather than by

detecting the module stop.

 Tests

39 A2 38MC 05 91

• the other servers stay UP (Ready) and continue to run the application

• on timeout in the SafeKit console, the old server UP (Ready) becomes ERROR

(connection error)

• after reboot of the stopped server, if the module is started automatically at boot

(safekit boot status), message in the log

"Action start called at boot time"

• after start-up of the module on the stopped server, the module becomes

UP (Ready) and it executes the start_both script which restarts the application on

this server with the message in the log

"Script start_both"

4.3.10 Continue your farm module tests with checkers

Go to section 4.4 for tests of checkers.

4.4 Tests of checkers common to mirror and farm

4.4.1 Test <errd> checker with action restart or stopstart

For a description of process/service monitoring, refer to section 13.9.

In userconfig.xml:

<errd>

 <proc name="appli.exe" atleast="1"

action="restart" class="prim"/>

</errd>

The checker monitors the process named

appli.exe.

• name="appli.exe" atleast="1": at

least one process appli.exe must run

• class

o class="prim" for mirror module

checker started/stopped on the

server in state PRIM or ALONE

(Ready), after/before the

application

(start_prim/stop_prim)

o class="both" for farm module

checker started/stopped on all

servers UP (Ready) after

after/before the application

(start_both/stop_both)

• action

If appli.exe is not running, the

checker set the resource

1. Kill of process appli.exe on the

server in (Ready) state. That is in

states PRIM or ALONE for a mirror

module, UP for a farm module.

o messages in the log:

"Process appli.exe not running"
"Action restart|stopstart called by errd"

o the module becomes

(Transient), respectively in state

PRIM, ALONE or UP

o in the restart case, the module

becomes (Ready), respectively

in state PRIM, ALONE or UP

o in the stopstart case, the module

becomes (Ready), respectively

in state SECOND, ALONE or UP

message in the log:

"Action start called automatically"

Note: a stopstart on PRIM

(Ready) causes a failover

2. Repeat the test on the same server if

it still runs the application (i.e.,

(Ready) in state ALONE, PRIM or UP).

By default, on the 4th error detection

within 24 hours (see maxloop and

SafeKit User's Guide

92 39 A2 38MC 05

proc.appli.exe to down. Then, it

executes a restart or stopstart.

o action="restart"

it restarts locally the application

(stop_xx; start_xx)

o action="stopstart"

it stops the module, as well as the

application, and then automatically

starts it

loop_interval described in section

13.2.3), the module becomes STOP

(NotReady). In the log, message

before stopping:

"Action stop called by maxloop"

4.4.2 Test <tcp> checker with action restart or stopstart

For a description of TCP checker, refer to section 13.11.

In userconfig.xml:

<check>

 <tcp ident="id" when="prim"

action="restart" >

 <to addr="addr" port="port"/>

 </tcp>

</chek>

The checker checks that the application

responds to connection requests.

• addr="addr" port="port"

test TCP connections on addr:port

• when

o when="prim" for mirror module

checker started/stopped on the

server in state PRIM or ALONE

(Ready), after/before the

application

(start_prim/stop_prim)

o when="both" for farm module

checker started/stopped on all

servers UP (Ready) after

after/before the application

(start_both/stop_both)

• action

If the connection fails, the checker

sets the resource tcp.id to down. The

associated failover rule, named t_id,

executes a restart or stopstart.

o action="restart"

It restarts locally the application

(stop_xx; start_xx)

1. Stop the application listening

addr:port on the server in state

(Ready). That is in states PRIM or

ALONE for a mirror module, UP for a

farm module:

o messages in the log:

"Resource tcp.id set to down by
tcpcheck"
"Action restart|stopstart from failover
rule t_id"

o the module becomes
(Transient)

o in case of restart, the module

becomes (Ready), respectively

in state PRIM, ALONE or UP

o in case of stopstart, the module

becomes (Ready), respectively

in state SECOND, ALONE or UP

Message in the log:

"Action start called automatically"

Note: a stopstart on PRIM

(Ready) causes a failover.

2. Repeat the test on the same server if

it still runs the application (i.e.,

(Ready) in state ALONE, PRIM or UP).

By default, on the 4th error detection

within 24 hours (see maxloop and

loop_interval in section 13.2.3), the

module becomes STOP (NotReady).

In the log, message before stopping:

"Action stop called by maxloop"

 Tests

39 A2 38MC 05 93

o action="stopstart"

It stops completely the module and

then automatically starts it.

4.4.3 Test <tcp> checker with action wait

For a description of TCP checker, refer to section 13.11.

In userconfig.xml:

<check>

 <tcp ident="id" when="pre"

action="wait" >

 <to addr="addr" port="port"/>

 </tcp>

</check>

The checker checks that an application,

external to the module, responds to

connection requests.

• addr="addr" port="port"

It checks TCP connections on

addr:port

• when="pre"

The checker starts before, stops after,

the application integrated into the

module (in start_xx /stop_xx).

• action="wait"

If the connection fails, the checker

sets the resource tcp.id to down. The

associated failover rule, named t_id,

executes a wait.

It stops the module, and its

application, then puts it in the state

WAIT, waiting for tcp.id reset to up by

the checker.

1. Stop the external application listening

on addr:port, when the server is in

(Ready) state.

o messages in the log:

"Resource tcp.id set to down by
tcpcheck"
"Action wait from failover rule t_id"

o the module becomes WAIT

(NotReady)on all nodes

Note: a wait on PRIM (Ready)

causes a failover

2. Restart the application listening on

addr:port.

o messages in the verbose log

"Resource tcp.id set to up by tcpcheck"
" Action wakeup from failover rule
Implicit_wakeup "

o the module becomes (Ready),

respectively in state SECOND,

ALONE, or UP

3. Repeat the test.

By default, on the 4th error detection

within 24 hours (see maxloop and

loop_interval in section 13.2.3), the

module becomes STOP (NotReady).

In the log, message before stopping:

"Action stop called by maxloop"

Note: This test allows testing of

connectivity to an external service. But if

the external service is down or is

unreachable on all servers, all servers

are in state WAIT (NotReady) and the

application is unavailable.

4.4.4 Test <interface check="on"> with action wait

For a description of interface checker, refer to section 13.13. For its automatic

configuration with <interface check="on">, see section 13.5.5.

SafeKit User's Guide

94 39 A2 38MC 05

In userconfig.xml:

<vip>

 <interface_list>

 <interface check="on">

 <real_interface>

 <virtual_addr addr="172.17.0.20"

 where="one_side_alias"

 check="on"/>

</real_interface>

 </interface>

 </interface_list>

</vip>

The checker checks that the Ethernet

cable is connected in the interface where

the virtual IP address is set.

• If the cable is disconnected, the

checker set the associated resource

intf.172.17.0.0 to down. The prefix

is intf and the suffix is the network

corresponding to the virtual IP.

• The default failover rule, named

interface_failure, executes a wait.

It stops the module, and its

application, then puts it in the state

WAIT, waiting for intf.172.17.0.0

reset to up by the checker.

Note: do not use check="on" on bonding

or teaming interface because these

interfaces bring their own failover

mechanisms from interface to interface

1. Remove the Ethernet cable from the

network card (on which the virtual IP is

configured) on the server in (Ready)

state. That is in state PRIM or ALONE for

a mirror module, UP for a farm module.

o messages in the log:

"Resource intf.172.17.0.0 set to down by
intfcheck"
"Action wait from failover rule
interface_failure"

o the module becomes WAIT
(NotReady)

Note: a wait on PRIM (Ready)

causes a failover

2. Plug the cable again

o messages in the log

"Resource intf.172.17.0.0 set to up by
intfcheck"
"Action wakeup from failover rule
Implicit_wakeup"

o the module becomes (Ready),

respectively in state SECOND, ALONE

or UP

3. Repeat the test on the same server

By default, on the 4th error detection

within 24 hours (see maxloop and

loop_interval in section 13.2.3), the

module becomes STOP (NotReady).

In the log, message before stopping:

"Action stop called by maxloop"

Note: disabling the interface (instead of

unplugging the ethernet cable) leads to

STOP (NotReady) if this network is

also used for heartbeat. The reason is

that the module cannot start (or restart)

without local IP address.

4.4.5 Test <ping> checker with action wait

For a description of ping checker, refer to section 13.12.

 Tests

39 A2 38MC 05 95

In userconfig.xml:

<check>

 <ping ident="id" when="pre"

action="wait">

 <to addr="extip"/>

 </ping>

</check>

The checker checks that the external

device (ex.: a router) with address extip

responds to ping.

• when="pre"

The checker starts before, stops after,

the application integrated into the

module (in start_xx /stop_xx).

• action="wait"

If the ping fails, the checker sets the

resource ping.id to down. The

associated failover rule, named p_id,

executes a wait.

It stops the module, and its

application, then puts it in the state

WAIT, waiting for ping.id reset to up

by the checker.

1. Break the link between the pinged

external device and the server the

server in (Ready) state. That is in

state PRIM, ALONE or SECOND for a

mirror module, UP for a farm module

o messages in the log:

"Resource ping.id set to down by
pingcheck"
"Action wait from failover rule p_id"

o the module becomes WAIT

(NotReady)on all nodes

Note: a wait on PRIM (Ready)

causes a failover

2. Restore the network connection

o messages in the verbose log

"Resource ping.id set to up by
pingcheck"
" Action wakeup from failover rule
Implicit_wakeup "

o the module becomes (Ready),

respectively in state SECOND,

ALONE, PRIM or UP

4. Repeat the test

By default, on the 4th error detection

within 24 hours (see maxloop and

loop_interval in section 13.2.3), the

module becomes STOP (NotReady).

In the log, message before stopping:

"Action stop called by maxloop"

Note: This test allows testing of

connectivity to an external device. But if

this one is down or is unreachable on all

servers, all servers are in state WAIT

(NotReady) and the application is

unavailable.

4.4.6 Test <module> checker with action wait

For a description of module checker, refer to section 13.16.

In userconfig.xml of AM module:

<check>

 <module name="othermodule">

 <to addr="ip" addr="9010"/>

 </module>

</check>

1. Stop the module othermodule. And

start the module AM on all servers.

o messages in the log of module AM

"Resource module.othermodule_ip set to
down by modulecheck

SafeKit User's Guide

96 39 A2 38MC 05

The checker in AM checks the module

othermodule on its virtual IP address ip.

• If the module othermodule is not

started, the checker set the associated

resource module.othermodule_ip to

down. The prefix is module, and the

suffix is the other module name and

address.

• The default failover rule, named

module_failure, executes a wait.

It stops the module AM, and its

application, then puts it in the state

WAIT, waiting for

module.othermodule_addr reset to up

by the checker.

• If the module othermodule is

restarted, the checker executes a

stopstart on AM.

Note: if the module AM is a mirror module

using file replication and because of rule

notuptodate_server, you may

experience a wrong behavior with

module AM blocked in a WAIT state, if the

stopstart action happens when AM in

the transition SECOND to ALONE

"Action wait from failover rule
module_failure"

o the module AM becomes WAIT

(NotReady) on all servers

2. Start the module othermodule

o messages in the verbose log of

module AM

"Resource module.othermodule_ip set
to up by modulecheck"
"Action wakeup from failover rule
Implicit_wakeup"

o the module AM goes (Ready)on

all nodes

3. Run a restart on othermodule

o messages in the log of module AM

"Action stopstart called by
modulecheck"

o the module AM stops and then

automatically starts

4. Repeat the test on the same server

By default, on the 4th error detection

within 24 hours (see maxloop and

loop_interval in section 13.2.3), the

module becomes STOP (NotReady).

In the log, message before stopping:

"Action stop called by maxloop"

4.4.7 Test <custom> checker with action wait

For a description of custom checker, refer to section 13.15.

In userconfig.xml:

<check>

 <custom ident="id" when="pre"

exec="customscript" action="wait" />

 </custom>

</check>

The custom checker is an infinite loop that

performs a test and assigns the associated

resource as up or down based on the test

result.

• when="pre"

The checker starts before, stops after,

the application integrated into the

module (in start_xx /stop_xx).

1. Cause the failure of the custom

checker test when the server is in

state (Ready). That is in state

PRIM, ALONE or SECOND for a mirror

module, UP for a farm module:

o messages in the log:

"Resource custom.id set to down by
customscript"
"Action wait from failover rule c_id"

o the module becomes WAIT

(NotReady)on all nodes

Note: a wait on PRIM

(Ready) causes a failover

 Tests

39 A2 38MC 05 97

• exec="customscript"

Script located under

AM/bin/customscript that sets the

resource custom.id:

o on error

SAFE/safekit set -r custom.id -v

down -i customscript

o on success

SAFE/safekit set -r custom.id -v

up -i customscript

• action="wait"

When the custom.id is down, the

associated failover rule, named c_id,

executes a wait.

It stops the module, its application, and

the checker, then puts it in the state

WAIT, waiting for custom.id reset to up

by the checker.

2. Fix the error tested by the custom

checker

o messages in the verbose log

"Resource custom.id set to up by
customscript"
"Action wakeup from failover rule
Implicit_wakeup"

o the module becomes

(Ready), respectively in state

SECOND, ALONE, PRIM or UP

3. Repeat the test on the same server.

By default, on the 4th error

detection within 24 hours (see

maxloop and loop_interval in

section 13.2.3), the module

becomes STOP (NotReady). In

the log, message before stopping:

"Action stop called by maxloop"

The action associated with the custom checker can be defined through an explicit failover

rule instead of the action attribute, which in this case is set to noaction. The following

example is equivalent to the previous one, except for the name of the failover rule, which

is customid_failure:

<check>

 <custom ident="id" when="pre" exec="customscript" action="noaction" />

 </custom>

</check>

<failover>

 <![CDATA[

 customid_failure: if (custom.id == down) then wait();

]]>

</failover>

This syntax is the one supported before SafeKit 8.

4.4.8 Test <custom> checker with action restart or stopstart

For a description of custom checker, refer to section 13.15.

4.4.8.1 Action through a failover rule

In userconfig.xml:

<check>

 <custom ident="id" when="prim"

exec="customscript" action="restart"

/>

 </custom>

</check>

1. Cause the failure of the custom checker test

when the server is in state (Ready). That

is in state PRIM, ALONE or SECOND for a

mirror module, UP for a farm module:

o messages in the verbose log:

"Resource custom.id set to down by
customscript"

SafeKit User's Guide

98 39 A2 38MC 05

The custom checker is an infinite loop

that performs a test and assigns the

associated resource as up or down based

on the test result.

• when

o when="prim" for mirror module

checker started/stopped on the

server in state PRIM or ALONE

(Ready), after/before the

application

(start_prim/stop_prim)

o when="both" for farm module

checker started/stopped on all

servers UP (Ready) after

after/before the application

(start_both/stop_both)

• exec="customscript"

Script located under

AM/bin/customscript that sets the

resource custom.id:

o on error

SAFE/safekit set -r

custom.id -v down -i

customscript

o on success

SAFE/safekit set -r

custom.id -v up -i

customscript

• action

When the custom.id is down, the

associated failover rule, named c_id,

executes a restart or stopstart.

o action="restart"

It restarts locally the application

(stop_xx; start_xx).

o action="stopstart"

It stops completely the module,

its application, and the checker,

and then automatically starts it.

and

"Action restart from failover rule c_id "

or

"Action stopstart from failover rule c_id "

o the module becomes (Transient).

o in case of restart, the module becomes

(Ready), respectively in state PRIM,

ALONE or UP

o in case of stopstart, the module

becomes (Ready), respectively in

state SECOND, ALONE or UP

Message in the log:

"Action start called automatically"

Note: a stopstart on PRIM (Ready)

causes a failover.

2. Repeat the test on the same server.

By default, on the 4th error detection within

24 hours (see maxloop and loop_interval

in section 13.2.3), the module becomes

STOP (NotReady). In the log, message

before stopping:

"Action stop called by maxloop"

The action associated with the custom checker can be defined through an explicit failover

rule instead of the action attribute, which in this case is set to noaction. The following

example is equivalent to the previous one, except for the name of the failover rule, which

is customid_failure:

 Tests

39 A2 38MC 05 99

<check>

 <custom ident="id" when="pre" exec="customscript" action="noaction" />

 </custom>

</check>

<failover>

 <![CDATA[

 customid_failure: if (custom.id == down) then restart();

]]>

</failover>

This syntax is the one supported before SafeKit 8.

4.4.8.2 Action through a command in the custom checker

In userconfig.xml:

<check>

 <custom ident="id" when="prim"

exec="customscript"

action="noaction" />

 </custom>

</check>

The custom checker is an infinite loop

that performs a test and execute a

restart or stopstart based on the test

result.

• when

o when="prim" for mirror module

checker started/stopped on the

server in state PRIM or ALONE

(Ready), after/before the

application

(start_prim/stop_prim)

o when="both" for farm module

checker started/stopped on all

servers UP (Ready) after

after/before the application

(start_both/stop_both)

• action="noaction"

No failover rule generated.

• exec="customscript"

Script located under

AM/bin/customscript that sets the

resource custom.id:

o on error

SAFE/safekit restart -i

customscript

1. Cause the failure of the custom checker test

when the server is in state (Ready). That

is in state PRIM, ALONE or SECOND for a

mirror module, UP for a farm module:

o messages in the verbose log:

"Action restart called by customscript"

ou

"Action stopstart called by customscript"

o the module becomes (Transient).

o in case of restart, the module becomes

(Ready), respectively in state PRIM,

ALONE or UP

o in case of stopstart, the module

becomes (Ready), respectively in

state SECOND, ALONE or UP

Message in the log:

"Action start called automatically"

Note: a stopstart on PRIM (Ready)

causes a failover.

2. Repeat the test on the same server.

By default, on the 4th error detection within

24 hours (see maxloop and loop_interval

in section 13.2.3), the module becomes

STOP (NotReady). In the log, message

before stopping:

"Action stop called by maxloop"

Note: on a direct action in the custom checker,

the maxloop counter is incremented only if -i

identity is passed to the command restart or

stopstart. Without identity, SafeKit considers

the command is as an administrative

SafeKit User's Guide

100 39 A2 38MC 05

It restarts locally the application

(stop_xx; start_xx).

or

o on error

SAFE/safekit stopstart -i

customscript

It stops completely the module,

its application, and the checker,

and then automatically starts it.

operation. The counter is reset and there is no

stop after 4 restarts.

39 A2 38MC 05 101

5. Mirror module administration

 Section 5.1 “Operating mode of a mirror module”

 Section 5.2 “State automaton of a mirror module (STOP, WAIT, ALONE, PRIM,

SECOND - NotReady, Transient, Ready)”

 Section 5.3 “First start-up of a mirror module (safekit prim command)”

 Section 5.4 “Different reintegration cases (use of bitmaps)”

 Section 5.5 “Start-up of a mirror module with the up-to-date data

STOP (NotReady) - WAIT (NotReady)”

 Section 5.6 “Degraded replication mode (ALONE (Ready) degraded)”

 Section 5.7 “Automatic or manual failover”

 Section 5.8 “Default primary server (automatic swap after reintegration)”

 Section 5.9 “Prim command fails: why? (safekit primforce command)”

To test a mirror module, see section 4.2.

To analyze a problem, see section 7.

5.1 Operating mode of a mirror module

1. Normal operation

Stable state: primary with secondary.

On the primary:

• Virtual IP is set

• Application is running

• Real-time file replication

The secondary is ready to run a failover

and become primary.

2. Automatic failover

Stable state: primary without secondary.

On primary stop, automatic failover of the

virtual IP and application.

SafeKit User's Guide

102 39 A2 38MC 05

3. Failback and reintegration

Transient state: secondary reintegrating.

Automatic file synchronization without

application shutdown and updating only

the files that were modified on the primary

while the other node was stopped.

4. Back to normal operation

Stable state: primary with secondary.

 Mirror module administration

39 A2 38MC 05 103

5.2 State automaton of a mirror module (STOP, WAIT, ALONE,

PRIM, SECOND - NotReady, Transient, Ready)

SafeKit User's Guide

104 39 A2 38MC 05

5.3 First start-up of a mirror module (safekit prim command)

At first start-up of a mirror module, if both servers are started with the start

command, both go into WAIT (NotReady)state with the message "Data may be not

uptodate for replicated directories (wait for the start of the remote server)" in the log.

At first start-up of a mirror module, use the special prim command on the server

with the up-to-date directory, and the second command on the other one. Data is

synchronized from the primary server to the secondary one.

For next start-up, use the start command on both servers.

1. initial state

• the mirror module has just been

configured with a new directory to

replicate between node1 and node2

• node1 has the up-to-date directory

• node2 has an empty directory

 STOP STOP
 (NotReady) (NotReady)

2. command prim on node1

• use the special prim command to

force node1 to become primary

• for following start-ups, always prefer

start: see section 5.5

• message in the log:

"Action prim called by
admin@<IP>/SYSTEM/root"

 ALONE STOP
 (Ready) (NotReady)

3. command second on node2

• start the other server as secondary

• the secondary reintegrates replicated

directory from primary

• message in the log:

"Action second called by
admin@<IP>/SYSTEM/root"

 PRIM SECOND
 (Ready) (Ready)

 Mirror module administration

39 A2 38MC 05 105

5.4 Different reintegration cases (use of bitmaps)

To optimize file reintegration, different cases are considered:

1. The module must have completed the reintegration (on the first start of the

module, it runs a full reintegration) before enabling the tracking of modification into

bitmaps

2. If the module was cleanly stopped on the server, then at restart of the secondary,

only the modified zones of modified files are reintegrated, according to a set of

modification tracking bitmaps.

3. If the server crashed (power off) or was incorrectly stopped (exception in nfsbox

replication process), or if files have been modified while SafeKit was stopped, the

modification bitmaps are not reliable, and are therefore discarded. All the files

bearing a modification timestamp more recent than the last known synchronization

point minus a grace delay (typically one hour) are reintegrated.

4. A call to the special second fullsync command triggers a full reintegration of all

replicated directories on the secondary when it is restarted.

1. secondary server2 has been stopped

• data is desynchronized

 ALONE STOP
 (Ready) (NotReady)

2. start command on node2

• data is reintegrated with bitmap

optimization (see above)

 ALONE SECOND
 (Ready) (Transient)

3. end of reintegration

• data is the same on both servers

• only modifications inside files are

replicated with a real-time synchronous

replication

 PRIM SECOND
 (Ready) (Ready)

SafeKit User's Guide

106 39 A2 38MC 05

The replication system also keeps track of the last date on which data was synchronized

on each node. This synchronization date, named synctimestamp, is assigned at the end

of the reintegration and changes in the PRIM (Ready) and SECOND (Ready)states.

When the module is stopped on the secondary node and then restarted, the

synctimestamp is one of the reintegration criteria: all files modified around this date are

potentially out of date on the secondary and must be reintegrated. Since SafeKit

7.4.0.50, the synchronization date is also used to implement an additional security.

When the difference between the synchronization date stored on the primary and on the

secondary is greater than 90 seconds, the replicated data is considered unsynchronized

in its entirety. The reintegration is interrupted with the following message in the module

log:

“| 2021-08-06 08:40:20.909224 | reintegre | E | Automatic synchronization cannot be applied due to an
abnormal delta between the dates of the last synchronization”

If the administrator considers that the server is valid, he can force the start in secondary

with full synchronization of the data, by executing the command: safekit second

fullsync -m AM.

5.5 Start-up of a mirror module with the up-to-date data

STOP (NotReady) - WAIT (NotReady)

SafeKit determines which server must start as primary or not. SafeKit retains the

information on the server with the up-to-date replicated directories. To take

advantage of this feature, use the command start and NOT the command prim

1. initial state

• server1 is primary ALONE

• directories are up-to-date on this server

• the module is stopped on node2

• node2 has desynchronized replicated

directories

 ALONE STOP
 (Ready) (NotReady)

2. command stop on node1

• stop of the server with the up-to-date

directories

 STOP STOP

 (NotReady) (NotReady)

 Mirror module administration

39 A2 38MC 05 107

3. command start on node2

• the module is put in the WAIT state waiting

for the start of the other server and within

its log of messages:

"Data may be not uptodate for replicated
directories (wait for the start of the remote
server)"
"Action wait from failover rule
notuptodate_server"
"If you are sure that this server has valid data,
run safekit prim to force start as primary"

• in this case, you must start server1 to

resynchronize data of server2

• if you really want to sacrifice the up-to-

date data and start node2 as primary with

the data not up-to-date: issue a stop

command then a prim command on node2

 STOP WAIT

 (NotReady) (NotReady)

 rfs.uptodate="down"

See also section 5.9.

5.6 Degraded replication mode (ALONE (Ready) degraded)

If the replication process nfsbox fails on the primary server (for instance because of

an unrecoverable replication problem), the application is not swapped on the

secondary server

The primary server goes to the ALONE state in a degraded replication mode.

Degraded is displayed in the web console. A message is emitted in the log:

"Resource rfs.degraded set to up by nfsadmin"

safekit state -v -m AM returns resource rfs.degraded up (replace AM by the

module name)

The primary server continues in ALONE state with a nfsbox process which does not

replicate anymore.

You must stop and start the ALONE server to come back to a PRIM - SECOND state with

replication

1. initial state

the mirror is in a stable state:

node1 PRIM (Ready)

node2 SECOND (Ready)

 PRIM SECOND
 (Ready) (Ready)

SafeKit User's Guide

108 39 A2 38MC 05

2. failure of replication process nfsbox on

node1

• node1 becomes ALONE (Ready)

degraded with the message in its log

"Resource rfs.degraded set to up by nfsadmin".

• safekit state -v AM returns resource

rfs.degraded=up (where AM is the module

name)

• node1 ALONE continues to execute the

application without replication

• node2 is in WAIT (NotReady) waiting

for the replication process with the

message in its log

"Action wait from failover rule degraded_server"

and with rfs.uptodate="down"

 ALONE WAIT

 (Ready) (NotReady)

rfs.degraded="up" rfs.uptodate="down"

3. come back to replication

• administrator makes stop command and

start command on node1 ALONE

• the nfsbox replication process is restarted

on node1

• node2 reintegrates replicated directories

before becoming SECOND (Ready)

• node1 becomes PRIM (Ready)

 PRIM SECOND
 (Ready) (Ready)

5.7 Automatic or manual failover

Automatic or manual failover on the secondary server is defined in userconfig.xml by

<service mode="mirror" failover="on"|"off">. By default, if the parameter is not

defined, failover="on"

The failover="off" mode is useful when the failover must be controlled by an

administrator. This mode ensures that an application runs always on the same primary

server whatever operations are made on the server (reboot, temporary stop of the

module for maintenance...). Only an explicit administrative action (prim command)

may promote the other server as primary.

Failover mode could be set dynamically with the safekit failover on|off

-m AM (replace AM by the module name).

 Mirror module administration

39 A2 38MC 05 109

1. initial state

the mirror is in a stable state:

node1 PRIM (Ready)

node2 SECOND (Ready)

 PRIM SECOND
 (Ready) (Ready)

2. restart with failover="on"

• if node1 former PRIM fails and stops, node2

becomes automatically

ALONE (Ready) (default mode)

 STOP ALONE
 (NotReady) (Ready)

3. behavior with failover="off"

• if node1 former PRIM fails and stops, node2

goes to WAIT (NotReady) state with

message in its log

"Failover-off configured"
"Action stopstart called by failover-off"
"Transition STOPSTART from failover-off"
"Local state WAIT NotReady "

• the administrator in this situation can

restart node1: the mirror restarts in its

former stable state

node1 PRIM (Ready)

node2 SECOND (Ready)

• the administrator can decide to force

node2 to become primary with the

command: stop then prim on node2

 STOP WAIT
(NotReady) (NotReady)

See also section 5.9

SafeKit User's Guide

110 39 A2 38MC 05

5.8 Default primary server (automatic swap after

reintegration)

After reintegration at failback, a server becomes by default secondary. The

administrator may choose to swap the application back to the reintegrated server at

an appropriate time with the swap command. This is the default behavior when

userconfig.xml <service> is defined without the defaultprim variable

If the application must automatically swap back to a preferred server after

reintegration, specify a defaultprim server in userconfig.xml: <service
mode="mirror" defaultprim="hostname node1">

1. initial state

• node1 (former PRIM) fails and stops

• node2 secondary becomes automatically
ALONE

 STOP ALONE
 (NotReady) (Ready)

2. failback without defaultprim

• node1 is restarted with command start

• it reintegrates replicated directories and

then becomes secondary

• an administrator can swap the primary

to node1 with the command swap in a

timely manner

• swap stops the application on node2 and

restarts it on node1

 SECOND PRIM
 (Ready) (Ready)

 Mirror module administration

39 A2 38MC 05 111

3. failback with defaultprim="hostname
node1"

• node1 in STOP (NotReady) at step

1 (initial state) is restarted by

command start

• it reintegrates replicated directories

• just after reintegration, an automatic

swap is made on node1 with the

message in its log:

"Transition SWAP from defaultprim"
"Begin of Swap"

• the application is then automatically

stopped on node2 and restarted on

node1

• at the end, node1 is PRIM

 PRIM SECOND
 (Ready) (Ready)

5.9 Prim command fails: why? (safekit primforce command)

A prim command may fail to start a server as primary: after trying a start-up, the

server goes back to STOP (NotReady).

1. initial state

• node1 ALONE has the up-to-date

directory

• node2 is in the process of reintegrating

files from node1

 ALONE SECOND
 (Ready) (Transient)

 Partially synchronized

2. command stop on node2 then on node1

• stop of node2 during its reintegration:

stop of node2 can be made while a file

that is half copied (corrupted file)

• node1 is also stopped

 STOP STOP
 (NotReady) (NotRead y)

 Partially synchronized

SafeKit User's Guide

112 39 A2 38MC 05

3. command prim on node2

• fails with messages in the log described

above

"Data may be inconsistent for replicated
directories (stopped during reintegration)"
"If you are sure that this server has valid data,
run safekit primforce to force start as primary"

• in this case, you must start node1 with

start command or prim command. And to

restart node2 with start command to

finish reintegration of files. While node2

is not in the state SECOND (Ready), its

data may be corrupted

• if you absolutely want to start as primary

on node2 partially reintegrated and with

data potentially corrupted, use the

command safekit primforce -m AM on

node2 (command line only, where AM is

the module name). Message in the log:

"Action primforce called by SYSTEM/root"

 STOP STOP
 (NotReady) (NotRead y)

 Partially synchronized

The command prim fails since the

data may be corrupted

Note: The safekit primforce -m AM command forces a full reintegration of

replicated directories on the secondary when it is restarted.

 Farm module administration

39 A2 38MC 05 113

6. Farm module administration

 Section 6.1 “Operating mode of a farm module”

 Section 6.2 “State automaton of a farm module (STOP, WAIT, UP - NotReady,

Transient, Ready)”

 Section 6.3 “Start-up of a farm module”

To test a farm module, see section 4.3.

To analyze a problem, see section 7.

6.1 Operating mode of a farm module

1. Normal operation

Stable state: 2 active nodes.

On all nodes:

• Virtual IP is set

• Application is running

• Network load sharing is distributed

among all nodes

Each node is ready to run a failover and

take 100% of the load.

2. Automatic failover

Stable state: 1 active node.

On remote node stop, automatic failover

of the network load sharing.

3. Back to normal operation

Stable state: 2 active nodes.

SafeKit User's Guide

114 39 A2 38MC 05

6.2 State automaton of a farm module (STOP, WAIT, UP -

NotReady, Transient, Ready)

Note: This is also the state automation of a light module. A light module is identified by

<service mode="light"> in userconfig.xml file under SAFE/modules/AM/conf (where

AM is the module name). The light type corresponds to a module that runs on one node

without synchronizing with other nodes (as can-do mirror or farm modules). A light

module includes the start and stop of an application as well as the SafeKit checkers that

can detect errors.

 Farm module administration

39 A2 38MC 05 115

6.3 Start-up of a farm module

Use the start command on each node running the module. An example with a farm of

2 servers is presented below.

1. initial state

• the farm module has just been configured

on node1 and node2

 STOP STOP
 (NotReady) (NotReady)

2. command start on node1 and node2

• message in the log of both servers:

"farm membership: node1 node2 (group
FarmProto_0)"
"farm load: 128/256 (group FarmProto_0)"
"Local state UP Ready"

• resource of the module instance on both

nodes: FarmProto_0 50%

 UP UP
 (Ready) (Ready)

SafeKit User's Guide

116 39 A2 38MC 05

39 A2 38MC 05 117

7. Troubleshooting

 Section 7.1 “Connection issues with the web console”

 Section 7.2 “Connection issues with the HTTPS web console”

 Section 7.3 “How to read logs and resources of the module?”

 Section 7.4 “How to read the commands log of the server?”

 Section 7.5 “Stable module (Ready) and (Ready)”

 Section 7.6 “Degraded module (Ready)and / (NotReady)”

 Section 7.7 “Out of service module / (NotReady) and / (NotReady)”

 Section 7.8 “Module STOP (NotReady): start the module”

 Section 7.9 “Module WAIT (NotReady): repair the resource="down"”

 Section 7.10 “Module oscillating from (Ready) to (Transient)”

 Section 7.11 “Message on stop after maxloop”

 Section 7.12 “Module (Ready) but non-operational application”

 Section 7.13 “Mirror module ALONE (Ready) - WAIT/ STOP (NotReady)”

 Section 7.14 “Farm module UP(Ready)but problem of load balancing in a farm”

 Section 7.15 “Problem with the virtual IP after failover”

 Section 7.16 “Problem after Boot”

 Section 7.17 “Analysis from snapshots of the module”

 Section 7.18 “Problem with the size of SafeKit databases”

 Section 7.19 “Problem for retrieving the certification authority certificate from an

external PKI”

 Section 7.20 “Issue with email sending by the SafeKit notification agent”

 Section 7.21 “Still in Trouble”

7.1 Connection issues with the web console

If you encounter problems for connecting to the SafeKit web console to SafeKit node,

such as no reply or connection error, run the following checks and procedures:

 section 7.1.1 “Browser check”

 section 7.1.2 “Browser state clear”

 section 7.1.3 “Server check”

Then, it may be necessary to reload the console into the browser.

7.1.1 Browser check

For the web browser:

1. check that it is a supported browser and its level

2. change the proxy settings for direct or indirect connection to the server

SafeKit User's Guide

118 39 A2 38MC 05

3. with Microsoft Edge, change the security settings (add the URL into the trusted

zones)

4. clear the browser's state on upgrade as described below

5. check that the web console and the server are at the same level (backward

compatibility may not be fully preserved)

7.1.2 Browser state clear

1. Clear the browser cache

A quick way to do this is a keyboard shortcut that works on IE, Firefox, and Chrome.

Open the browser to any web page and hold CTRL and SHIFT while tapping the

DELETE key. (This is NOT CTRL, ALT, DEL). The dialog box will open to clear the

browser. Set it to clear everything and click Clear Now or Delete at the bottom

2. Clear the browser SSL cache if HTTPS is used

Look at advanced settings for the browser and search for SSL cache.

Finally close all windows for the browser, stop the browser process still running in the

background if necessary, and re-open it fresh to test what wasn't working for you

previously.

7.1.3 Server check

On each SafeKit cluster node check:

1. the firewall

If this has not yet been done, run the SAFE/private/bin/firewallcfg add

command which configures the operating system firewall. For other firewalls, add an

exception to allow connections between the web browser and the server. For details,

see section 10.3.

2. the web server configuration

HTTP access to the web console requires authentication. If it has not yet been done,

run the SAFE/private/bin/webservercfg -passwd pwd to initialize (or reinitialize)

this configuration with the password of the user admin. For details, see section

11.2.1.

3. the network and the server availability

4. the safeadmin and safewebserver services

They must be started.

5. the SafeKit cluster configuration

Run the command safekit cluster confinfo (see section 9.2). This command

must return on all nodes, the same list of nodes and the same value for the

configuration signature. If not, reapply the cluster configuration on all nodes (see

section 12.2).

7.2 Connection issues with the HTTPS web console

If you encounter problems for connecting the secure SafeKit web console to SafeKit

nodes, you can run the following checks and procedures:

 section 7.1 “Connection issues with the web console”

 section 7.2.1 “Check server certificate”

 Troubleshooting

39 A2 38MC 05 119

 section 7.2.2 “Check certificates installed in SafeKit”

 section 7.2.3 “Revert to HTTP configuration”

7.2.1 Check server certificates

The SafeKit web console connects to a SafeKit node that is identified by a certificate. To

get the SafeKit node certificate content with Internet Explorer or Chrome, run the

following:

1. Click on the lock next to the URL

to open the security report

2. Click on the View certificates link.

It opens a window that displays

the certificate content

3. Check the issuer that must be the

appropriate certification authority

4. Check the validity date and the

workstation date. If necessary, change

the workstation date

5. Check the validity date. If the

certificate is expired, you must renew.

For certificate generated with the

SafeKit PKI, see section 11.3.1.9.1

SafeKit User's Guide

120 39 A2 38MC 05

6. Click on Details tab

7. Select Subject Alternate Name field. Its

content is displayed into the bottom

panel. The location set into the URL for

connecting the SafeKit web console

must be included into this list. Change

the URL if necessary

8. The address value for the node, set into

the SafeKit cluster configuration, must

be one of the values listed. If it is not,

change the cluster configuration as

described in section 12.2.

When using DNS name, you must use

lower case.

With SafeKit <= 7.5.2.9, the server’s

name must be included.

7.2.2 Check certificates installed in SafeKit

You can use the checkcert command for checking all the certificates.

On each SafeKit nodes:

1. Log as administrator/root and open a command shell window

2. Change directory to SAFE/web/bin

3. Run checkcert -t all

It checks all installed certificates and returns a failure if an error is detected

4. You can check that the server certificate contains some DNS name or IP address

with:

checkcert -h "DNS name value"

checkcert -i "Numeric IP address value"

The server certificate must contain all DNS names and/or IP addresses used

for HTTPS connection. These ones must also be included into the SafeKit

cluster configuration file.

If the command fails, it may be due to an incorrect file format.

The content of a .crt file looks like:

-----BEGIN CERTIFICATE-----

MIID+DCCAuCgAwIBAgIFAJNuUj4wDQYJKoZIhvcNAQELBQAwUjEQMA4GA1UEChMH

RXhhbXBsZTEQMA4GA1UECxMHU2FmZUtpdDEsMCoGA1UEAxMjU2FmZUtpdCBMb2Nh

bCBDZXJ0aWZpY2F0ZSBBdXRob3JpdHkwHhcNMjQwNTI5MDYzMzIxWhcNNDQwNTI0

…

H/kG9pfzpnCEtZeyRCxGiowQpEmKtqOS51Xzg+q2tI7uiOAf5SVxHbqj/8c5RNZi

/iYlZg3itzIxLTPBEn3BD6pSVmRU33yU2cHo6HMsXXwFvo/LMOWNhVrj9I33d7u6

0fooCyU3aFbFCwGx

 Troubleshooting

39 A2 38MC 05 121

-----END CERTIFICATE-----

The content of a .key file looks like:

-----BEGIN PRIVATE KEY-----

MIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCbSAP0f28TR3lj

jMRNabVP6725NQoH6Wt3O238aH8uXKKiI2byzWGXVjnrvT8AK+3lraQ4yLoAGtO3

LTsxsbuOQi90kwfelKNlQsIh3WJ7V6bGltLoQhT+bDdLJAPmLH1nFHKe19Tkvqr/

..

SUl5Ap71plSqrYlvNhkiOB50Hs34r+iNtPB6GaKtnTHicBjI1i95zrU/J5JKHxBV

uRY4ghOgtJyq9LuZXb2aTOht7K7QTjLRqHS5rdy+alSByhKpD2wR6oqX44mw1w1s

eOCnWlvhpFarc9As9BIVGsw=

-----END PRIVATE KEY-----

7.2.3 Revert to HTTP configuration

If the problem cannot be solved, you can revert to the HTTP configuration (where

SAFE=C:\safekit in Windows if System Drive=C: ; and SAFE=/opt/safekit in Linux).

On S1 and S2:

1. remove the file SAFE/web/conf/ssl/httpd.webconsolessl.conf

2. run safekit webserver restart

3. clear the browser cache as described in section 7.1.2

7.3 How to read logs and resources of the module?

Module log and Scripts log for the module on

one node may be analyzed with (replace below

node1 by the node name and AM by the module

name):

• the web console at URI /console/en

/monitoring/modules/AM/nodes/node1/logs

• the command executed on node1

safekit logview -m AM for the module log

• on node1, into files
SAFEVAR/modules/AM/userlog_<year>_<mon

th>_<day>T<time>_<script name>.ulog

for the scripts log

With the module log, you can understand why

the module is no longer in its stable state

(Ready).

With the scripts log, you can see the output

messages of module scripts (start_xxx and

stop_xxx).

Note that a module can leave its stable

(Ready)because of an administrator

command: safekit stop | restart | swap |
stopstart | forcestop… -m AM

• You will find a list of SafeKit log

messages in Log Messages

Index.

• Messages in the log after an

administrator command are:

"Action start called by
admin@<IP>/SYSTEM/root"
"Action stop called by
admin@<IP>/SYSTEM/root"
"Action restart called by
admin@<IP>/SYSTEM/root"
"Action swap called by
admin@<IP>/SYSTEM/root"
"Action stopstart called by
admin@<IP>/SYSTEM/root"
"Action forcestop called by
admin@<IP>/SYSTEM/root"

admin@<ip>: via the SafeKit console

SYSTEM: command on Windows

root: command on Linux

• If "Action stop called by maxloop"

appears in the module log, see

section 7.11

http://safekit-portal/en/monitoring/nodes/node1/modules/mirror/logs
http://safekit-portal/en/monitoring/nodes/node1/modules/mirror/logs

SafeKit User's Guide

122 39 A2 38MC 05

Resources state of the module on one node

may be analyzed with (replace below node1 by

the node name and AM by the module name):

• the web console at URI /console/en

/monitoring/modules/AM/nodes/node1/reso

urces

• the command executed on node1
safekit state -m AM -v

• Module status

state.local, state.remote
usersetting.errd, usersetting.checker,
usersetting.encryption

• Checkers

proc.xxx, intf.xxx, custom.xxx

• File replication

rfs.uptodate, rfs.degraded,
rfs.reintegre_failed

7.4 How to read the commands log of the server?

There is a log of the safekit commands ran on the server.

Commands log may be displayed using the command safekit cmdlog

See section 10.11 for more details

7.5 Stable module (Ready) and (Ready)

• A stable mirror module on 2 servers is in the state PRIM (Ready) - SECOND

(Ready): the application is running on the PRIM server; on failure, the SECOND server

is ready to resume the application.

• A stable farm module is in the state UP (Ready)on all servers of the farm: the

application is running on all servers.

7.6 Degraded module (Ready)and / (NotReady)

A degraded mirror module is in the state ALONE (Ready)- STOP/ WAIT

(NotReady). There is no recovery server, but the application is running on the ALONE

server.

A degraded farm module is in the state UP (Ready)on at least one server of the farm,

the other servers being in the state STOP/ WAIT (NotReady). The application is

running on the UP server.

In the degraded case, there is no emergency procedure to implement. Analysis of the

state STOP/ WAIT (NotReady)can be done later. However, you can attempt to

restart the module in a stable state:

 See section 7.8 “Module STOP (NotReady): start the module”

 See section 7.9 “Module WAIT (NotReady): repair the resource="down"”

7.7 Out of service module / (NotReady) and / (NotReady)

An out of service mirror or farm module is in the state STOP/ WAIT (NotReady)on all

servers. In this case, the application is not operational on any server anymore. You must

restore the situation and restart the module in (Ready)on at least one server:

http://safekit-portal/en/monitoring/nodes/node1/modules/mirror/logs
http://safekit-portal/en/monitoring/nodes/node1/modules/mirror/logs
http://safekit-portal/en/monitoring/nodes/node1/modules/mirror/logs

 Troubleshooting

39 A2 38MC 05 123

 See section 7.8 “Module STOP (NotReady): start the module”

 See section 7.9 “Module WAIT (NotReady): repair the resource="down"”

7.8 Module STOP (NotReady): start the module

1. Start the stopped module (replace below AM by the module name) with:

• the web console via Monitoring/ on the node/ Start/

• the command safekit start -m AM executed on the node

2. Check that the module becomes (Ready).

3. Analyze results of start in the module and scripts logs (replace below node1 by the

node name and AM by the module name) with:

• the web console at URI /console/en/monitoring/modules/AM/nodes/node1/logs

• the command safekit logview -m AM on node1, for the module log

• the files
SAFEVAR/modules/AM/userlog_<year>_<month>_<day>T<time>_<script

name>.ulog on node1, for the scripts log

7.9 Module WAIT (NotReady): repair the resource="down"

If the module is in the state WAIT

(NotReady), it waits for the state of a

resource to become up.

You must identify and fix the problem

that caused the resource state to go

down.

To determine the resource involved,

analyze the module log and resources

(see section 7.3).

Notes:

A wait checker is started after the

prestart script and stopped before

poststop.

The checker is active on all servers

ALONE/PRIM/SECOND/UP (Ready).

The action of the checker upon

detecting an error is to set a resource

to down.

A failover rule referencing the resource

performs the wait action.

The module is locally in state

 WAIT (NotReady)while the

resource stays down.

Messages from wait checkers:

• files not up-to-date locally: see section 5

"Data may be not uptodate for replicated
directories (wait for the start of the remote
server)"
"Action wait from failover rule
notuptodate_server"
"If you are sure that this server has valid data,
run safekit prim to force start as primary"

• <interface check="on"> checker of a

local network interface

"Resource intf.ip.0 set to down by intfcheck"
"Action wait from failover rule interface_failure"

• <ping> checker of an external IP

"Resource ping.id set to down by pingcheck"
"Action wait from failover rule ping_failure"

• <module> checker of another module

"Resource module.othermodule_ip set to down
by modulecheck"
"Action wait from failover rule module_failure"

• <tcp ident="id" when="pre"> checker

of an external TCP service

"Resource tcp.id set to down by tcpcheck"
"Action wait from failover rule t_id"

http://safekit-portal/en/monitoring/nodes/node1/modules/mirror/logs

SafeKit User's Guide

124 39 A2 38MC 05

The module exits the

WAIT(NotReady) state as soon as

the checker sets the resource back to

up.

• <custom ident="id" when="pre">

customized checker

"Resource custom.id set to down by
customscript"
"Action wait from failover rule customid_failure"
<splitbrain> checker
“Resource splitbrain.uptodate set to down by
splitbraincheck"
…
"Action wait from failover rule splitbrain_failure"

• Files not up-to-date locally due to split-

brain: see section 13.17

7.10 Module oscillating from (Ready) to (Transient)

If a module oscillates from state

(Ready)to state (Transient), it is

probably a victim of a restart or

stopstart checker which detects a

constant error.

By default, after the 4th unsuccessful

restart on a server, the module stops,

and the server stabilizes in STOP

(NotReady).

Use the module log to determine which

checker is the source of the logs (to read

logs, see section 7.3).

Notes:

A restart or stopstart checker is

defined in userconfig.xml by:

• when="prim" for a mirror module

The checker is started on the node

PRIM/ALONE (Ready)after script

start_prim (stopped before

stop_prim). It checks the application

started in start_prim.

• when="both" for a farm module

The checker is started on all nodes

UP (Ready)after script start_both

(stopped before stop_both). It checks

the application started in start_both.

The action of a checker on an error is to

restart or stopstart the module. stopstart

on PRIM (Ready)leads to a failover of

the primary on the other node.

Messages from restart or stopstart

checkers:

• <errd> in userconfig.xml

checker of processes

"Process appli.exe not running"
"Action restart|stopstart called by errd"

• <tcp ident="id"

when="prim"|"both"> in
userconfig.xml

TCP checker of the application

"Resource tcp.id set to down by tcpcheck"
"Action restart|stopstart from failover rule
tcp_failure"

• <custom ident="id"

when="prim"|"both"> in
userconfig.xml

custom checker

"Resource custom.id set to down by
customscript"
"Action restart|stopstart from failover rule
customid_failure"

or

"Action restart|stopstart called by
customscript"

 Troubleshooting

39 A2 38MC 05 125

The module is in the state PRIM/UP

(Transient)during the application

restart.

After several oscillations, the module

stops with "Action stop called by maxloop" in

the module log: see section 7.11.

7.11 Message on stop after maxloop

If an error detected by a checker repeats

itself several times and successively, the

module is stopped on the server in

STOP(NotReady): because the error is

permanent, and the action of the checker

cannot correct it

If in userconfig.xml, there is no

parameter maxloop / loop_interval in

<service>, by default, maxloop="3"
loop_interval="24"

if the checkers generate more than 3

unsuccessful restarts (restart, stopstart,

wait) in less than 24H, then stop of

module: STOP(NotReady).

The counter is reset to 0 if an

administrator executes an action on the

module such as safekit start -m AM

(replace AM by the module name) or

safekit stop -m AM (without the

option -i <identity>)

Message on stop after maxloop

"Action stop called by maxloop"

7.12 Module (Ready) but non-operational application

If a server has a status of PRIM(Ready)or ALONE(Ready)or UP(Ready), the

application can be non-operational because of undetected errors on start-up. In the

following, replace node1 by the node name and AM by the module name.

1. Check the output messages of application scripts coming from

start_prim/start_both and stop_prim/stop_both. They are visible in (replace

below node1 by the node name and AM by the module name) with:

• the web console at URI /console/en/monitoring/modules/AM/nodes/node1/logs

• the files
SAFEVAR/modules/AM/userlog_<year>_<month>_<day>T<time>_<script

name>.ulog, on node1, for the scripts log

Check if there are errors during start or stop of the application. Be careful, sometimes

the userlog is disabled because it is too large with <user logging="none"> in

userconfig.xml of the module.

2. Check application scripts start_prim(/both) and stop_prim(/both) of a

mirror(/farm) and userconfig.xml with:

http://safekit-portal/en/monitoring/nodes/node1/modules/mirror/logs

SafeKit User's Guide

126 39 A2 38MC 05

• the web console at URI /console/en/configuration/modules/AM/config

• under the directory SAFE/modules/AM on the node1

3. Execute a restart of the PRIM/ALONE/UP(Ready)node to stop and restart locally the

application (without failover) with:

• the web console via Monitoring/ on the node/Restart/

• the command safekit restart -m AM executed on the node (replace AM by the

module name)

4. If the application is still non-operational, apply a stop PRIM/ ALONE /

UP(Ready)node to stop and the application (stopstart makes a failover if the other

node is Ready) with:

• the web console via Monitoring/ on the node/ Stop/

• the command safekit stop -m AM executed on the node

7.13 Mirror module ALONE (Ready) - WAIT/ STOP

(NotReady)

If a mirror module stays in state ALONE(Ready)- WAIT(NotReady), check the

resource state.remote on each node (to read resources, see section 7.3). If this state is

UNKNOWN on the two nodes, there is probably a communication problem between the

nodes. This problem may also lead to ALONE(Ready)- STOP (NotReady).

Possible root causes are:

1. Real network problem

Check your network configurations on the two nodes.

2. Firewall rules on one or the two nodes

For details, see section 10.3

3. Not the same SafeKit cluster configuration or cluster cryptographic keys

To communicate, cluster nodes must belong to the same cluster and have the same

configuration (see section 12):

• The web console warns if nodes in the cluster nodes list have not an identical

configuration

• The command: safekit cluster confinfo on any nodes of the cluster must

report an identical configuration signature for all nodes of the cluster (see section

9.2)

If the cluster configuration is not identical, re-apply the cluster configuration on all

cluster nodes as described in section 3.2.2.

4. Not the same module cryptographic keys

When cryptographic has been enabled for the module, the resource

usersetting.encryption is “on” (to check the state of resources, see section 7.3). If

the nodes do not have the same keys for the module, the nodes will not be able to

communicate for the internal module communications.

To distribute the same module cryptographic keys, re-apply the module configuration

on all nodes.

 Troubleshooting

39 A2 38MC 05 127

See section 10.7 for details.

5. Expired cryptographic keys

In SafeKit <= 7.4.0.31, the key for encrypting the module communication has a

validity period of 1 year. When it expires in a mirror module with file replication, the

secondary fails to reintegrate and the module stops with an error message into the

log:

reintegre | D | XXX clnttcp_create: socket=7 TLS handshake failed

In SafeKit > 7.4.0.31, the message is:

reintegre | D | XXX clnttcp_create: socket=7 TLS handshake failed. Check server time and module
certificate (expiration date, hash)

To solve this problem, see section 10.7.3.1

7.14 Farm module UP(Ready)but problem of load balancing in a

farm

Even though all servers in the farm are UP(Ready), load balancing is not working.

7.14.1 Reported network load share are not coherent

In a farm module, the sum of the network load share of all UP(Ready), module nodes

must be equal to 100%.

If it’s not the case, there is probably a communication problem between module nodes.

Possible root causes are the same as for a mirror module. See section 7.12 for possible

solutions.

See also section 4.3.6.

7.14.2 virtual IP address does not respond properly

If the virtual IP does not respond properly to all requests for connections:

1. choose a node in the farm that receives and processes connections on the virtual IP

address (established TCP connections):

• in Windows, use the command netstat -an | findstr <virtual IP address>

• in Linux, use the command netstat -an | grep <virtual IP address>

2. stop the farm module on all nodes except the one that receives connections and that

remains UP(Ready) with:

• the web console via Monitoring/ on the node/ Stop/

• the command safekit stop -m AM (replace AM by the module name)

3. check that all connections to the virtual IP address are handled by the single server
 UP (Ready)

For a more detailed analysis on this topic, see next section and:

 section 4.3.4 “Test virtual IP address of a farm module”

 section 4.3.5 “Test TCP load balancing on a virtual IP address”

 section 4.3.7 “Test compatibility of the network with invisible MAC address”

SafeKit User's Guide

128 39 A2 38MC 05

7.15 Problem with the virtual IP after failover

Sometimes, external devices function correctly when the primary server is node1, but

they do not work properly after failover on the other node, node2.

It may be a problem with the configuration of external devices. Two types of TCP

connections must be considered at the level of external devices:

• Outgoing TCP connections issued by the external devices to the SafeKit cluster.

• Incoming TCP connections issued by the SafeKit cluster to the external device.

The outgoing TCP connections, issued by the external devices to the SafeKit cluster, must

be configured with the virtual IP address and not the physical IP address of node1.

Otherwise, they will remain stuck to node1 in case of a failover to node2. Note that on

the node side, the application must listen on the virtual IP address to accept connections

from external devices. You can check the listening TCP sockets using the netstat

command. Generally, a listening TCP socket is bound to all IP addresses (0.0.0.0), and in

this case, there is no problem.

For incoming TCP connections, if the application initiates a TCP connection on node1 to

an external device, this connection will start with the physical IP address of node1 as the

source IP address. After a failover to node2, the connection will start with the physical IP

address of node2. This is because the virtual IP address is set as an alias on the network

interface of the primary node, and the primary IP address of the network interface

remains the physical IP address of the node.

Therefore, if the external devices perform a check on their incoming connections, it is

necessary to configure them to accept connections from the two physical IP addresses of

the two nodes in the cluster.

Now, if the external devices can only be configured with a single IP address, then you

need to reconfigure in the userconfig.xml:

<virtual_addr where="one_side_alias">

to

<virtual_addr where="one_side">

This way, the primary IP address will be the virtual IP address, and the connections from

the primary node to the external devices will use the virtual IP address as the source IP

address. Consequently, the external devices must be configured to accept incoming

connections on a single IP: the virtual IP address.

The same issue may occur if external devices communicate with the cluster using UDP.

In this case, it may be preferable to configure one_side.

The final possibility is that an external device only accepts communications to a unique

Ethernet MAC address of a server. In this very specific and rare case, you need to

configure the virtual IP address with a 'vmac_invisible' MAC address. For example, it

can start with '5A:FE':

<virtual_interface type="vmac_invisible" addr="5A:FE:01:02:03:04">

When configured as 'vmac_invisible', a virtual MAC address is associated with a virtual

IP address, but this MAC address is never visible in Ethernet headers. This configuration

allows packets directed to the virtual IP address to be received by all servers within the

system without revealing the virtual MAC address to switches, which would typically be

able to locate it. Since switches cannot detect this address, they broadcast packets

intended for it across all ports in the local area network (LAN). All nodes receive these

packets, particularly both nodes of the cluster. Therefore, the primary server can be on

 Troubleshooting

39 A2 38MC 05 129

node 1 or node 2. vmac_invisible requires promiscuous mode on the physical Ethernet

cards of both nodes. Additionally, it necessitates the 'vip' kernel module, which must be

compiled on Linux.

Preferably, configure a virtual IP address with 'one_side_alias', and only use

'one_side' or 'vmac_invisible' if necessary.

Note that none of these issues arise with a complete virtual machine replication and

restart solution. In this case, there is no virtual IP address involved. The VM is

relaunched on the secondary node with the same primary IP address and the same MAC

address. To avoid the aforementioned issues, you can use SafeKit solutions for Hyper-V

or KVM.

7.16 Problem after Boot

If you encounter a problem after boot, see section 4.1.

Note that by default, modules are not automatically started at boot. For this, you must

setup the boot start into the module’s configuration with:

• the web console at /console/en/configuration/modules/AM/config

• in file SAFE/modules/AM/conf/userconfig.xml on the node1, with the boot attribute

of the service tag (see section 13.2.3)

Then apply the new configuration on all nodes.

7.17 Analysis from snapshots of the module

When the problem is not easily identifiable, it is recommended to take a snapshot of the

module on all nodes as described in section 3.5. A snapshot is a zip file that collects, for

one module, the configuration files, dumps… Its content allows an offline and in-depth

analysis of the module and node status.

The structure and content of the snapshot varies depending on the version of

SafeKit.

Since SafeKit 8.1, the structure of the snapshot is as follows:

snapshot_centos7_test3_mirror/

Directory snapshot_nodename_AM

Snapshot for the module AM get from the node

named nodename

 mirror/
Directory AM

Application module name

 config_2021_05_05_14_15_42/

 config_2021_07_08_10_05_02/

 config_2021_08_18_16_15_25/

Directories
config_year_month_day_hour_mn_sec

Last 3 configurations for the module, including

the current one

 dump_2021_05_15_10_15_40/

 dump_2021_07_20_11_05_35/

 dump_2021_08_28_08_11_45/

Directories
dump_year_month_day_hour_mn_sec

Last 3 dumps for the module, including the

last one

SafeKit User's Guide

130 39 A2 38MC 05

 tmp/ Directory for the level 3 support

7.17.1 Module configuration files

The module configuration files are saved as follows:

config_2021_08_18_16_15_25/ Directory for the module's configuration files

 module/

 bin/

 conf/

 web/

 private/

Directory module

It contains the user configuration files

• bin directory

scripts start_xx, stop_xx, …

• conf directory

XML configuration userconfig.xml

Check the user configuration file and scripts for troubleshooting with the application

integration into SafeKit.

7.17.2 Module dump files

The dump contains the state of the module and the SafeKit node as it was at the time of

the dump.

dump_2021_08_28_08_11_45/ Directory for the module's dump files

 csv/

 licenses/

 notifications/

 userlog/

 var/

 web/

• csv directory

Logs and status in csv format

• licences directory

SafeKit licenses get from SAFE/conf directory

• notifications directory

Email notification agent configuration gets from

SAFE/web/notifications directory

• userlog directory

Module scripts logs

• var directory

Extract of the SAFEVAR directory

• web directory

Web server configuration gets from

SAFE/web/conf directory

 log.txt

 logverbose.txt
Module log files (not verbose and verbose)

 heartplug Information file

 Troubleshooting

39 A2 38MC 05 131

Various information about the node (list and status of

installed modules, OS version, disk, and network

configuration…)

 last.txt

 systemevt.txt

Or

 applicationevt.txt

 systemevt.txt

System logs

• last.txt and systemevt.txt in Linux

Or

• applicationevt.txt and systemevt.txt in

Windows

 commandlog.txt Commands log for the node

 heart

 heart.trc

 nfsbox

 nfsbox.trc

Trace files for level 3 support

• Check the license file(s) into licenses directory for troubleshooting with the SafeKit

license check

• Check the Apache configuration files into web directory for troubleshooting with the

SafeKit web service

• Check the module logs, in log.txt and logverbose.txt, for troubleshooting with the

module behavior

• Check the module scripts logs

userlog/userlog_<year>_<month>_<day>T<time>_<script name>.ulog for

troubleshooting with application start/stop

• If necessary, look at heartplug file for some information on the node and search the

system logs for events that occurred at the same time as the problem being analyzed

• Check the commands log commandlog.txt for troubleshooting with cluster

management or distributed commands

7.17.2.1 var directory

The var directory is mainly for the level 3 support. It is a copy of some part of the

SAFEVAR directory. In the var/cluster directory:

• look at the cluster.xml file for checking the cluster configuration

• look at the cluster_ip.xml file for checking the DNS name resolution of names into

the cluster configuration

7.17.2.2 csv directory

The logs and reports are also exported into csv format in the csv directory:

csv/ csv directory

 logverbose.csv

Logs and status of the module

• Verbose log

SafeKit User's Guide

132 39 A2 38MC 05

 resource.csv

 resourcelog.csv

• Resources status and history

 commandlog.csv

 modules.csv

 moduleslog.csv

 clusterstate.csv

Logs and status of the node

• Commands log

• List of installed modules

• For the level 3 support

Import the csv files into an Excel sheet to facilitate their analysis. To import a file:

1. Create a new sheet

2. From the Data tab, import From Text/CSV

3. In the dialog box, locate and double-click the csv file to import, then click Import

4. Then click on Load

 Troubleshooting

39 A2 38MC 05 133

You can use the Excel features to filter rows according to the level of the messages, ...

and load in different sheets the csv of each node.

For the exact date, format cells with Number/Custom jj/mm/aaaa

hh:mm:ss,000.

7.18 Problem with the size of SafeKit databases

SafeKit uses SQLite3 storage to save:

1. The log and the status of the node

• SAFEVAR/log.db contains the commands log

• SAFEVAR/resource.db contains the list of installed modules and its history

These are referred to as node databases.

2. The log and the resources of the module

• SAFEUSERVAR/log.db contains the module log

• SAFEUSERVAR/resource.db contains the state of the module resources and its

history

These are referred to as module databases.

The size of the logs and histories increases as events occur on the SafeKit node and

modules. Therefore, they should be purged regularly by deleting the oldest entries. This

is automatically done thanks to a periodic job (task scheduler in Windows; crontab in

Linux) that is controlled by the safeadmin service. The clean of the node databases is

always active. The clean of the module databases is active only when the module is

running.

To check that the jobs are ready:

1. Job for cleaning node databases

• In Windows, run schtasks /QUERY /TN safelog_clean

• In Linux, run crontab -u safekit -l

The output of this command must contain the safelog_clean entry

2. Job for cleaning AM module databases (where AM is the module name)

• In Windows, run schtasks /QUERY /TN safelog_AM

• In Linux, run crontab -u safekit -l

The output of this command must contain the safelog_clean_AM entry

 The clean-up is implemented by a script located into SAFEBIN (in Linux,

SAFEBIN=/opt/safekit/private/bin; in Windows, SAFE=C:\safekit\private\bin - if

%SYSTEMDRIVE%=C:):

dbclean.ps1 in Windows

and

dbclean.sh in Linux

Clean the log and history in the node databases

dbclean.ps1 AM in Windows

and

Clean the log and history in the databases of the

module named AM

SafeKit User's Guide

134 39 A2 38MC 05

dbclean.sh AM in Linux

If necessary, you can run this script outside the scheduled period to force the databases

clean-up.

7.19 Problem for retrieving the certification authority certificate

from an external PKI

When using an external PKI, you must provide the certificate of the certification

authority CA used to issue server certificates (cacert.crt file containing the chain of

certificates for the root and intermediates Certification Authorities)

If you have trouble retrieving these files from an external PKI, you can build them using

the procedure described below.

7.19.1 Export CA certificate(s) from public certificates

The following procedure explains how to build from a public certificate, the chain of

certificates for the root and intermediates Certification Authorities, into the file

combined.cer.

When you have the public certificate (.crt or .cer file in Base-64 encoded X.509 format)

generated by the PKI:

1. Copy the .crt (or .cer) file on a Windows workstation

2. Double click on this file to open it with “Crypto Shell Extensions”

3. Select the “Certification Path” tab to view the tree of certification authorities

4. Select an entry (from top to down except the leaf)

5. Click on “View Certificate”. A new window is opened with details for the selected

certificate

6. In this new window, select the “Details” tab and click “Copy to File”

 Troubleshooting

39 A2 38MC 05 135

7. It opens the Certificate Export Wizard:

a. Click on “Next” to continue

b. On the “Export File Format” page, select “Base-64 encoded X.509 (.CER).”,

and then click “Next”

c. For “File to Export”, “Browse” to the location to which you want to export the

certificate. Fill “File name” with the name of the certificate file. Then, click

“Next”

d. Click “Finish” to export the certificate

e. Your certificate is successfully exported

SafeKit User's Guide

136 39 A2 38MC 05

8. Now repeat steps 4-7 for all entries (except the last one) to export all intermediate

CA certificates in the Base-64 encoded X.509(.CER) format. For the example, you

would repeat steps 4-7 on SSSL.com RSA subCA intermediate CA to extract it as its

own certificate.

9. Concatenate all your CA certificates into one file combined.cer

Run the following command with all the CA certificates you extracted earlier:

• In Windows

type intermediateCA.cer rootCA.cer > combined.cer

• In Linux

cat intermediateCA.cer rootCA.cer >> combined.cer

The resulting combined certificate should look something like the following:

This file can be used as the SAFE/web/conf/cacert.crt

7.20 Issue with email sending by the SafeKit notification agent

Since SafeKit 8.2.4, SafeKit offers a notification agent that sends emails for major events

on modules. It is described in section 10.9.

This section describes how to troubleshoot the SafeKit notification agent thanks to the e-

mail sending test command:

1. Open a PowerShell/shell window as administrator/root

 Troubleshooting

39 A2 38MC 05 137

2. Change directory to SAFE

where SAFE=C:\safekit in Windows (if %SYSTEMDRIVE%=C:), and

SAFE=/opt/safekit in Linux

3. Run ./private/bin/safenotif -testemail

This command may fail due the issues described below.

If the email test is successful and you still encounter issues, please check the SafeKit

notification agent log for further investigation. The log is located at

SAFEVAR/notifications/safenotif.log. This file has a limited size and is truncated in

case the limit size is reached. Consequently, it is recommended to make a copy of it if

you analyze it, or if you want the Evidian support to analyze it.

7.20.1 Failed to read or parse the configuration file

The e-mail sending test command may fail with the following error:

Failed to read or parse the configuration file.

Please verify the "SAFE/conf/notifications/safenotif_conf.json" file exists and

is properly formatted as a JSON file.

This is due either to:

• SAFE/conf/notifications/safenotif_conf.json file does not exist

You need to configure the agent as described in section 10.9.1

• SAFE/conf/notifications/safenotif_conf.json file is not properly formatted in

the JSON format

Use a tool (in your machine or online) to verify the JSON syntax.

• SAFE/conf/notifications/safenotif_conf.json contains paths

For instance, smtp.expert.caCertificateFile property accepts a path. In Windows,

paths contain backslashes (`\`); they must be escaped with another backslash (`\\`,

e.g. `C:\\Users\\Administrator\\certfile.pem`).

7.20.2 Curl errors

The notification agent uses the curl SMTP client. Consequently, when an email sending

error occurs, examining the curl error is the key to understanding the cause of the

failure. The following non-trivial curl errors may occur. For other errors, refer to the curl

documentation.

• Recipient address rejected

The recipient's address is rejected by the SMTP server with the following error:

curl error: curl: (55) RCPT failed: 550

To resolve this issue, modify the file

SAFE/conf/notifications/safenotif_conf.json to set the correct recipient

address in emailNotifications.recipients.

• Protocol mismatch

When the protocol used by the notification agent does not align with the one required

by the SMTP server, you may have the following curl errors:

curl: (35) OpenSSL/3.2.1: error:0A00010B:SSL routines::wrong version number

SafeKit User's Guide

138 39 A2 38MC 05

curl: (55) MAIL failed: 530

curl: (64) STARTTLS not supported

To resolve these problems, edit SAFE/conf/notifications/safenotif_conf.json

file, to set the appropriate value for smtp.protocol property.

• Authentication mismatch

o curl: (35) OpenSSL/3.2.1: error:0A0000C6:SSL routines::packet length too

long

The notification agent tried to connect to the SMTP server by being authenticated,

whereas no authentication is required.

To resolve this issue, reset the SMTP client credentials as described in section

10.9.2.

o curl: (55) RCPT failed: 554

The notification agent attempted to connect to the SMTP server without

authentication, whereas authentication is required.

To resolve this issue, set the SMTP client credentials as described in section 10.9.2.

• Certificate issue

curl: (60) SSL certificate problem: self-signed certificate

This error can occur when the SMTP server is configured for SMTPS or

SMTP+STARTTLS. It means that the server uses a self-signed certificate, rather than

a certificate signed by a trusted certification authority (CA). The Certificate Authority

(CA) certificate that issued the SMTP server's certificate is needed to verify it.

To resolve this issue:

1. ask your PKI provider to supply the CA certificate, which must include the

certificate chain for the root and intermediate CAs. It should be Base-64

encoded X.509 certificate file (PEM format), with a .pem or .crt suffix

2. copy it to your SafeKit server

3. edit SAFE/conf/notifications/safenotif_conf.json file to fill in the

smtp.expert.caCertificateFile property to the path of the CA certificate

using ‘\\’ in the string,

e.g. "C:\\Users\\Administrator\\cacert.crt".

7.21 Still in Trouble

 See Messages Index

 See section 8.5 for opening a ticket at the call desk

39 A2 38MC 05 139

8. Access to Evidian support

 Section 8.1 Home page of support site”

 Section 8.2 “Permanent license keys”

 Section 8.3 “Create an account”

 Section 8.4 “Access to your account”

 Section 8.5 “Call desk to open a trouble ticket”

 Section 8.6 “Download and upload area”

 Section 8.7 “Knowledge base”

8.1 Home page of support site

• https://www.evidian.com/support

• Software Keys: get permanent keys

• Subscription Request: create an account

• Download: download product or upload snapshots

• Call desk: tool for opening a call on problem

• Knowledge Base: base of KB

https://www.evidian.com/support/call-desk/

SafeKit User's Guide

140 39 A2 38MC 05

8.2 Permanent license keys

• https://www.evidian.com/suppor

t/software-keys/

• Software Keys: get permanent

keys

• Fill-in the form with the delivery

note sent after a purchase order

• Take "hostname" and OS of your

servers

• To obtain a temporary key for

any hostname and any OS, for

details see section 2.1.5

https://www.evidian.com/support/software-keys/
https://www.evidian.com/support/software-keys/

 Access to Evidian support

39 A2 38MC 05 141

8.3 Create an account

• https://www.evidian.com/support/

registration/

• Subscription Request: create an

account

• The procedure must be executed

once with:

- Your client identity

- Your confidential identity

- A unique e-mail address

• Note: your identities are sent by

mail if you take an Evidian support

contract

• What you will obtain: a user

account and a private password on

the site

8.4 Access to your account

• https://www.evidian.com/supp

ort/call-desk/

• Login on top at right with your

identity and password

• Then you have access to all

services of support site

https://www.evidian.com/support/registration/
https://www.evidian.com/support/registration/
https://www.evidian.com/support/call-desk/
https://www.evidian.com/support/call-desk/

SafeKit User's Guide

142 39 A2 38MC 05

8.5 Call desk to open a trouble ticket

8.5.1 Call desk operations

• https://www.evidian.com/support/

call-desk/

• Call desk: tool to open a trouble

ticket on problem with 2 main

operations

• Create a call

• Search for a Call and exchange

with support on a Call

8.5.2 Create a call

1. In the header, specify the SafeKit version, problem type and priority as well as the

module name and the OS

1. Create a call

2. Search and update

3. Remote access

4. Report on calls

https://www.evidian.com/support/call-desk/
https://www.evidian.com/support/call-desk/

 Access to Evidian support

39 A2 38MC 05 143

2. Summarize the problem and then describe with more details the scenario and the

date and time of the problem

3. Snapshots of the SafeKit module causing problem are necessary for the analysis. See

next page for attaching snapshots

4. Create the call by pressing "Submit"

8.5.3 Attach the snapshots

• When there is a problem on a SafeKit module, snapshots of the module on all servers

are necessary for analysis

• To get snapshots, see section 3.5

• If the snapshots size is smaller than 10 MBytes, you can attach them with the

opening of the call by clicking on "Add"

• Otherwise, downloading snapshots on the support site may take several minutes. In

this case indicate in "Remark text" that you download them into your private upload

area: see section 8.6.3

SafeKit User's Guide

144 39 A2 38MC 05

8.5.4 Answers to a call and exchange with support

• All exchanges between the support and the customer are made with "Remarks"

• When support adds a remark on a call, the customer is notified by mail. This is the

case for first response of the support after the opening of the call

• After consultation of the last remark of support, the customer can add a new remark

in turn

• The exchange takes place until the closure of the call by agreement between the

customer and Evidian support

 Access to Evidian support

39 A2 38MC 05 145

8.6 Download and upload area

8.6.1 Two areas of download and upload

• https://www.evidian.com/support/downl

oad/

• Product download area: area for

downloading SafeKit packages

• Private area [client identity]: private

area to upload files

8.6.2 Product download area

• Go to <Version

8.2>/Platforms/<Your

platform>/Current versions

• Download the SafeKit package

• For more information on

installation, documentation,

upgrade, see section 2

https://www.evidian.com/support/download/
https://www.evidian.com/support/download/

SafeKit User's Guide

146 39 A2 38MC 05

8.6.3 Private upload area

• Create a directory for a

problem

• Upload snapshots in this

directory with

• For building snapshots, see

section 3.5

• For attaching snapshots, see

section 8.5.3

8.7 Knowledge base

• https://support.evidian.com/knowledge_ba

se/

• Knowledge Base: base of KB

• Search for example all articles on the errd

component of SafeKit

https://support.evidian.com/knowledge_base/
https://support.evidian.com/knowledge_base/

39 A2 38MC 05 147

9. Command line interface

 Section 9.1 “Commands to control and setup SafeKit”

 Section 9.2 “Command lines to configure and monitor the cluster”

 Section 9.3 “Command lines to control modules”

 Section 9.4 “Command lines to monitor modules”

 Section 9.5 “Command lines to configure Modules”

 Section 9.6 “Command lines for support”

 Section 9.7 “Command lines during the maintenance of the module application”

 Section 9.8 “Command lines distributed across multiple SafeKit servers”

 Section 9.9 “Examples”

The SafeKit command-line interface is provided by the safekit command. To use it:

In

Windows

1. Open a PowerShell console as administrator

2. Go to the root of the SafeKit installation directory SAFE (by default

SAFE=C:\safekit if %SYSTEMDRIVE%=C:)

cd c:\safekit

3. Run .\safekit.exe <arguments> for the local command

4. Run .\safekit.exe -H "<hosts>" <arguments> for the command

distributed across multiple nodes

In Linux

1. Open a Shell console as root

2. Go to the root of the SafeKit installation directory SAFE (by default

SAFE=/opt/safekit)

cd /opt/safekit

3. Run ./safekit <arguments> for the local command

4. Run ./safekit -H "<hosts>" <arguments> for the command

distributed across multiple nodes

This section presents other commands that also must be run as

administrator/root.

9.1 Commands to control and setup SafeKit

Use the following commands for starting/stopping SafeKit services and their automatic

boot start.

9.1.1 safeadmin service

SafeKit main service mandatory and started automatically at boot.

SafeKit User's Guide

148 39 A2 38MC 05

In Windows

net start safeadmin

net stop safeadmin

safeadmin can also be controlled using the Windows

Services Control Panel applet.

To check the service status, run:

• In command prompt

sc query safeadmin

• In PowerShell:

Get-Service -name safeadmin

In Linux

systemctl start safeadmin

systemctl stop safeadmin

To check the service status, run:

systemctl status safeadmin

9.1.2 safewebserver service

This service is used by the web console, module checkers and distributed command line

interface. By default, it is started automatically at boot. For details, refer to section 10.8.

The following commands are used to control this service:

safekit webserver start

safekit webserver restart

safekit webserver stop
Control the service via the safekit command.

In Windows

net start safewebserver

net stop safewebserver

Control the service via the net command.

To check the service status, run:

• In command prompt

sc query safewebserver

• In PowerShell:

Get-Service -name safewebserver

In Linux

systemctl start safewebserver

systemctl restart safewebserver

systemctl stop safewebserver

Control the service via the systemctl command.

To check the service status, run:

systemctl status safewebserver

safekit boot [webon | weboff |

webstatus]

Controls the automatic start at boot of the

safewebserver service ("on" or "off")

By default: "on"

The default configuration of the SafeKit web service is HTTP with file-based

authentication. During the setup initialization, described in section 11.2.1, two users are

created by default:

• the admin user to authenticate access to the SafeKit web console

• the private rcmdadmin user to authenticate access to the safekit distributed

command

 Command line interface

39 A2 38MC 05 149

The following commands are used to change the usernames and passwords for these

users when necessary:

safekit webservercfg -passwd pwd

[-user username]

Setup the password pwd for the user who

accesses the web console.

Optionally, setup its username that is

admin by default.

safekit webservercfg -rcmdpasswd pwd

[-rcmduser username]

Setup the password pwd for the private

user who accesses the distributed

command.

Optionally, setup its username that is

rcmdadmin by default.

• The script SAFE/private/bin/webservercfg can also be called directly

• Options -user and -rcmduser are available since SafeKit 8.2.4

9.1.3 Email notification agent

Since SafeKit 8.2.4, SafeKit offers a notification agent to send emails for major modules

events. The notification agent is not enabled by default. To configure and enable it, refer

to the section 10.9.

The following commands are used to control this agent:

safekit notification enable

safekit notification disable Enable/disable the notification agent.

safekit notification status Display the status of the notification agent.

9.1.4 SNMP service

Net-SNMP Agent service in Windows

SNMP monitoring for SafeKit is not enabled by default. To enable and configure it, refer

to the section 10.10.

In Windows, SNMP monitoring is provided by Net-SNMP Agent service.

safekit safeagent [start |

stop | restart | check] Control the service via the safekit command.

net start "Net-SNMP Agent"

net stop "Net-SNMP Agent"

Control the service via the net command.

To check the service status, run:

• In command prompt

sc query "Net-SNMP Agent"

• In PowerShell:

SafeKit User's Guide

150 39 A2 38MC 05

Get-Service -name "Net-SNMP Agent"

safekit boot [snmpon |

snmpoff | snmpstatus]

Controls the automatic start at boot of the Net-

SNMP Agent service ("on" or "off")

By default: "off"

Standard snmpd service in Linux

SNMP monitoring for SafeKit is not enabled by default. To enable and configure it, refer

to the section 10.10.

In Linux, SNMP monitoring is provided by the standard snmpd Linux agent.

systemctl start snmpd

systemctl stop snmpd

To check the service status, run:

systemctl status snmpd

9.2 Command lines to configure and monitor the cluster

safekit cluster config

[filepath .xml or .zip]

[lock | unlock]

Apply the new SafeKit cluster configuration with the

content of the file passed as argument, cluster.xml or

cluster.zip:

• cluster.xml

Configure with new cluster.xml and generate new

cryptographic keys

• cluster.zip

Configure with the new cluster.xml and

cryptographic keys stored into the zip file

When called with no argument, this command keeps the

current configuration but generates new cryptographic

keys.

Ex:

safekit cluster config /tmp/newcluster.xml

Use with great care: the new cluster

configuration and cryptographic key must then

be copied to all cluster nodes to have the same

cluster configuration on all nodes.

If the command is called with the parameter lock,

future safekit cluster config commands will not

be granted until they are called with the unlock

parameter.

safekit cluster

confcheck filepath
Check the cluster configuration, with the content of the

xml file passed as argument, without applying it

 Command line interface

39 A2 38MC 05 151

safekit cluster confinfo

Return, for each active cluster node:

• the date of last cluster configuration,

• the digital signature of last cluster configuration

• the state: locked (1) or unlocked (0) status for the

cluster configuration

This command allows checking if all node of a cluster

have the same configuration.

Ex:

safekit cluster conf info

Node Signature Date

Lock

rh6server7 6f1032b11a7b2 … 33e67c 2016-05-

20T17:06:45 0

rh7server7 6f1032b11a4e0 … 33e67c 2016-05-

20T17:06:45 0

The SafeKit cluster configuration must be the

same on all nodes of a cluster. Asymmetric

cluster configurations are not supported.

safekit cluster deconfig Remove the cluster configuration and the cryptographic

key.

safekit cluster state

Return the global SafeKit modules configuration state

For each installed module on each cluster node, this

commands list:

• the node name,

• module name,

• module mode (farm or mirror)

• internal module id number,

• date of last module configuration,

• digital signature of last configuration

This command list which modules are installed on

which nodes of the cluster. Signature and date of last

configuration on each node allow checking that a

module has the same configuration on all nodes, and if

not, which node has the most recent configuration.

safekit cluster genkey

Create cryptographic key for global SafeKit

communication (implemented in the safeadmin

process). The cluster configuration must be

deployed again (with safekit -G) for this

command to take effect.

safekit cluster delkey

Suppress cryptographic keys for global SafeKit

communication. The cluster configuration must

be applied again (with safekit -G) for this

command to take effect.

SafeKit User's Guide

152 39 A2 38MC 05

safekit -H "*" -G

Distributes the local cluster configuration and

associated cryptographic key if it exists, on all

cluster nodes.

Redo a name resolution for all names specified in

cluster.xml and userconfig.xml of modules,

without stopping modules (when possible).

See section 9.8 for details on this distributed

command.

9.3 Command lines to control modules

The commands apply to the module named AM, passed as an argument with the -m

option.

When the SAFEMODULE environment variable is set with the module name, -m

argument not required. It is set during the execution of the module scripts

(see section 14.2).

safekit start -m AM Starts the module

safekit waitstart -m AM Waits for the end of the module start

safekit stop -m AM Stops the module

safekit shutdown Stops all running modules

safekit waitstop -m AM Waits for the end of the module stop

safekit waitstate -m AM

STOP | ALONE | UP | PRIM |

SECOND
Wait for the required stable state (NotReady or Ready).

safekit restart -m AM

Executes only application stop and start scripts

• For a mirror module

equivalent to stop_prim ; start_prim

• For a farm module

equivalent to stop_both ; start_both

safekit stopstart -m AM

Unlike the restart, the stopstart causes a complete

stop of the module followed by an automatic start. If

the module was PRIM, there is a failover of the PRIM

module on the other server.

Equivalent to safekit stop -m AM; safekit

start -m AM.

 Command line interface

39 A2 38MC 05 153

safekit swap [nosync] -m

AM

Mirror modules only

Swaps the roles of primary and secondary nodes.

Use nosync to swap without synchronizing the

replicated directories.

safekit prim -m AM

Mirror modules only

Forces the module to start as primary. It fails if the

other server is already primary.

The main use case of this command is described in

section 5.3

safekit second [fullsync]

-m AM

Mirror modules only

Forces the module to start as secondary. It fails if the

other server is not primary.

Use fullsync to force the full synchronization of the

replicated directories.

safekit forcestop -m AM Forces the module stop to use when the stop has no

effect

safekit set -m AM

-r resource -v state

[-n] [-l]

[-i identity]

This command sets the state of one resource:

safekit set -r custom.myresource -v up

safekit set -r custom.myresource -v down

Each assignment of the main resources is stored in a

log to keep track of their status. Use -n to disable this

logging or -l to force it.

Use -i to specify the identity of the component, which

affects the resource, in the logged message

The commands restart, stop, stopstart and swap also accept the

argument -i identity. This argument is set when the action is called by

checkers or the failover machine for logging purpose and to increment the

maxloop counter. When not set, the maxloop counter is reset.

9.4 Command lines to monitor modules

The commands apply to the module named AM, passed as an argument with the -m

option.

When the SAFEMODULE environment variable is set with the module name, -m

argument not required. It is set during the execution of the module scripts

(see section 14.2).

SafeKit User's Guide

154 39 A2 38MC 05

safekit level [-m AM]

Indicates the version of SafeKit and the license

With the AM parameter, the module script level is

called if exists, and its results displayed

safekit state Displays the status of all modules

safekit state -m AM

[-v | -lq]

Displays the status of the AM module

With the verbose option -v, status of all the module

resources are listed: see the usefulness of resources

in section 7.9.

With the option -lq, the command returns status

(and exit code): STOP (0), WAIT (1), ALONE (2),
UP (2), PRIM (3), SECOND (4)

safekit log -m AM [-s nb]

[-A] [-l en|fr]

Displays the last nb messages of the AM module log.

Use -A for displaying the verbose log (all messages

including debug ones).

Use -l option for choosing the language, en(glish) or

fr(ench).

Default: -s 300

safekit logview -m AM [-A]

[-l en|fr]

View in real time the last main messages of the AM

module log.

Use -A for displaying all messages (including debug

ones).

Use -l option for choosing the language, en(glish) or

fr(ench).

safekit logview -m AM -s 300

[-A] [-l en|fr]

View in real time the AM module log messages

starting from the last 300 messages

safekit logsave -m AM [-l

en|fr] [-A] /tmp/f.txt

Save main messages of the AM module log in

/tmp/f.txt (absolute path mandatory).

Use -A for saving all messages (including debug

ones).

Use -l option for choosing the language, en(glish) or

fr(ench).

safekit printi|printe -m AM

"message"

Application start/stop scripts can write messages in

the module log with I or E level.

9.5 Command lines to configure modules

The commands apply to the module named AM, passed as an argument with the -m

option.

When the SAFEMODULE environment variable is set with the module name, -m

argument not required. It is set during the execution of the module scripts

(see section 14.2).

 Command line interface

39 A2 38MC 05 155

safekit config -m AM

Apply changes made in files under SAFE/modules/AM in such

as userconfig.xml, start_prim/both or stop_prim/both

(mirror/farm).

It is recommended to run this command when the module is

stopped.

However, it is allowed in stable states ALONE (Ready)or WAIT

(NotReady). But only some configuration parameters can be

changed while the module is in these states. This feature is

called dynamic configuration. Parameters that could be

dynamically changed are reported into section 13 that

describes all configuration parameters.

safekit module

genkey -m AM

Generates cryptographic keys for the module instances

network exchanges encryption. Considered after the next

configuration of the module.

safekit module

delkey -m AM

Erase cryptographic keys associated with the module. After

the next configuration, module instances network exchanges

will be performed without encryption.

safekit "*" -E AM

Distributes the local configuration for the module AM and

associated cryptographic key if it exists, to all cluster nodes.

See section 9.8 for details on this distributed command.

safekit confinfo

-m AM

Display information on the active and current configuration of

the module AM.

• the active configuration is the last configuration

successfully applied. It is in SAFE/private/modules/AM

• the current configuration is the one located in

SAFE/modules/AM. It may be different from the active one

when it has been modified and not yet been applied

This command is useful for checking the configuration of the

module. It displays:

• the signature value and a last modification date (Unix

timestamp) for the active configuration

• the signature value and last modification date (Unix

timestamp) for the current configuration

When the signature values are different, it means that the

configurations are not identical and that you may have to

apply the current configuration.

You can run this command on all the cluster nodes that

implement the module to check that the configuration of the

module is identical on all nodes.

safekit confcheck

-m AM

Check the module configuration under SAFE/modules/AM

without applying

SafeKit User's Guide

156 39 A2 38MC 05

safekit module

install -m AM

[-M id] [-r]

[AM.safe]

Installs the AM.safe module file under the AM name

[-r] force reinstallation of the module

[-M id] forces the installation of the module with the id

specified as module id

• AM.safe default location is SAFE/Application_Modules/

and its subdirectories

• An absolute path could be used too

• If no AM.safe is given, the command search for file

AM.safe in /Application_Modules/ and its subdirectories

safekit module

package -m AM

/…/newAM.safe

Packages the AM module in /…/newAM.safe (absolute path

mandatory)

Used by the console to create a backup in
SAFE/Application_Modules/backup/

safekit module

uninstall -m AM

Uninstalls the AM module. Deletes the module configuration

directory SAFE/modules/AM

safekit module list Lists the names of the installed modules

safekit module

listid
Lists the names and ids of the installed modules

safekit module

getports -m AM

(or -i id)

Lists the communication ports used by the module to

communicate between servers

9.6 Command lines for support

The commands apply to the module named AM, passed as an argument with the -m

option.

When the SAFEMODULE environment variable is set with the module name, -m

argument not required. It is set during the execution of the module scripts

(see section 14.2).

safekit snapshot -m AM

/tmp/snapshot_xx.zip

Saves the snapshot of the AM module in

/tmp/snapshot_xx.zip (absolute path mandatory)

A snapshot creates a dump and gathers under

SAFEVAR/snapshot/modules/AM the last 3 dumps and

last 3 configurations to collect them in a .zip file

To analyze snapshots, see section 7.17.

To send snapshots to Evidian support, see section 8.

Since SafeKit 8.2.4, the zips generated for

snapshots are protected by the password

safekit. This allows the snapshot to be received

in its entirety when sent via email.

 Command line interface

39 A2 38MC 05 157

safekit dump -m AM

To solve a problem in real time on a server, make a

dump of the AM module

A dump creates a directory dump

dump_year_month_day_hour_mn_sec on the server side

under SAFEVAR/snapshot/modules/AM. The dump

directory contains the module log and status, as well as

information on the system state and SafeKit processes

at the time of the dump

safekit

-r "specialcommand"

Calls the special command in SAFEBIN with SafeKit

environment variables set.

safekit clean

[all | log | process |

resource]

[-m AM]

Clean the logs, the resource file, and the main

processes of the module AM.

This command must be used with caution since it

deletes working files and kills processes.

• safekit clean log -m AM

Clean the logs (verbose and not verbose logs) of

the module. To be used when these logs are

corrupted (e.g.: errors in log view).

• safekit clean resource -m AM

Reinitialize the resource file of the module. To be

used when this file is corrupted (e.g.: errors in

resources display)

• safekit clean process -m AM

Kill the main processes (heart) of the module. To

be used when the stop and forcestop of the

module did not achieve to kill these processes.

• safekit clean all -m AM

Default value. Clean log, resource, and process.

9.7 Command lines during the maintenance of the module

application

During maintenance or testing of the application, it may be necessary to stop or restart

the associated services. But if the module is configured to monitor the application

(processes/services monitoring, checkers), these operations will cause false error

detection and automatic restart or failover. To avoid this, follow one of the two solutions

described below.

9.7.1 Module control for maintenance

The following commands allow the module's behavior to be dynamically modified without

the need for reconfiguration. They apply to the module named AM, passed as an

argument with the -m option.

SafeKit User's Guide

158 39 A2 38MC 05

When the SAFEMODULE environment variable is set with the module name, -m

argument not required. It is set during the execution of the module scripts

(see section 14.2).

safekit errd off -m AM

safekit errd on -m AM

Disable/enable the processes/services monitoring

defined in the module configuration.

The resource variable usersetting.errd reflects the

current setting.

With SafeKit < 8.2, use
safekit errd suspend|resume -m AM

safekit checker off -m AM

safekit checker on -m AM

Disable/enable all checkers (interface, TCP, IP, custom,

etc.) defined in the module configuration.

The resource variable usersetting.checker reflects the

current setting.

safekit boot off -m AM

safekit boot on -m AM

safekit boot status [-m

AM]

Disable/enable the automatic startup at boot of the

module.

The resource variable usersetting.boot reflects the

current setting.

Without the option -m AM, lists the boot status of all

modules.

safekit failover off -m AM

safekit failover on -m AM

Disable/enable the module automatic failover (see

section 13.2.3).

The resource variable usersetting.failover reflects the

current setting.

This command must be issued on all nodes

belonging to the same cluster to not have

unexpected results.

To check the state of resources, see section 7.3.

If the module is running, a side effect of these commands (except safekit

boot) is the execution of the update of the module to apply the new setting.

With SafeKit < 8.2, these commands (except safekit boot) could only be

executed when the module was started and in a stable state. Additionally,

the module's configuration options were restored once the module was

stopped and then restarted.

Since SafeKit 8.2, these commands can be performed while the module is

stopped and are not reset when the module stops then starts. To restore the

initial state, you must either execute the corresponding command or reapply

the module configuration.

 Command line interface

39 A2 38MC 05 159

9.7.2 Running the application without the module

Rather than starting the module and disabling the checkers, you might want to launch

only the application without the module processes. For this, stop the module and run the

following scripts, called wrappers:

SAFE/private/modules/AM/bin/AM_start_wrapper Start the application

SAFE/private/modules/AM/bin/AM_stop_wrapper Stop the application

The wrappers, generated during each configuration of the module:

• start/stop the application with the start_prim/stop_prim or start_both/stop_both

scripts

• set/reset the virtual IP address if it is defined into the module configuration

Wrappers filename extension is .ps1 in Windows; .sh in Linux.

9.8 Command lines distributed across multiple SafeKit servers

SafeKit provides a command-line interface for running it on multiple SafeKit servers.

Each server must be running the SafeKit web service (see section 10.8).

The password assigned during the initialization of the SafeKit web service

must be the same on all servers, even if they do not belong to the same

SafeKit cluster.

The distributed command applies to the servers specified with the -H "<hosts>"

argument described below.

-H "*"

-H "<cluster node names

list>"

Apply the command on nodes defined into the local

cluster configuration (see section 12).

The protocol and port are those defined in the local

configuration of the SafeKit web service. By default, the

protocol is http and the port is 9010.

• -H "*"

for all cluster nodes

• -H "<cluster node names list>"

list of node names as defined in the cluster

configuration, separated by coma. For example:

-H "node1,node2"

-H "[[protocol:port],]

<servers list>"

Apply the command to the listed servers, which may not

necessarily belong to the local cluster.

• Optional specification of the protocol (http or https)

and the port to use.

If not specified, the protocol and port are those

defined in the local configuration of the SafeKit web

SafeKit User's Guide

160 39 A2 38MC 05

service. By default, the protocol is http and the port

is 9010.

• List of SafeKit servers (IP address or name) with a

comma as the separator.

Examples:

-H "[http:9500],10.0.0.107,10.0.0.108"

-H "[https],S1.company.com,S2.company.com"

-H "<urls list>"

Apply the command to the listed URLs, which may not

necessarily belong to the local cluster.

Example:

-H "http://192.16.0.2:9010,http://192.16.0.3:9010"

The distributed commands are as follows.

safekit -H "<hosts>"
<safekit command

arguments>

Executes the safekit command on the servers specified by

-H.

Almost all safekit commands can be applied on a list of

cluster nodes.

Exceptions are safekit logview, safekit -p and

safekit -r commands which can be used only locally.

Examples:

safekit -H

"http://192.168.0.2:9010,http://192.168.0.3:9010"

level

safekit -H "*" cluster confinfo

safekit -H "node2" module list

safekit -H "[http:9500],server1,server2" start -m

AM

safekit -H "<hosts>"

-E AM

Exports the configuration of the module named AM on the

servers specified by -H. The AM module must be installed

locally.

This command performs the following actions:

• creates AM.safe from local SAFE/modules/AM

• transfers and installs AM.safe on the list of servers

• installs the module on remote servers with the local

module id

• if the module was configured locally, configures it on

remote servers

See the usage example in section 9.9.3.

http://192.16.0.2:9010,http:/192.16.0.3:9010

 Command line interface

39 A2 38MC 05 161

safekit -H "<hosts>"

-G

Exports the local cluster configuration on the servers

specified by -H.

This command performs the following actions:

• collect the content of the SAFEVAR/cluster directory

• transfer and copy the collected files into the target

servers’ SAFEVAR/cluster directory

• trigger safeadmin configuration reload

See the usage example in section 12.2.2

9.9 Examples

9.9.1 Local and distributed command

For instance, to display the levels (SafeKit, OS…):

• for the local host

safekit level

• for all hosts configured in the SafeKit cluster

safekit -H "*" level

9.9.2 Cluster configuration with command line

See section 12.2.2.

9.9.3 Module configuration with command line

In the following, replace AM by your module name; replace node1 and node2 by the name

of your cluster nodes set during the SafeKit cluster configuration.

1. Log as administrator/root and open a command shell window on one node

For instance, log-in node1

2. Optional

Only during the first configuration, run safekit module install -m AM
SAFE/Application_Modules/generic/mirror.safe

to install a new module named AM, from mirror.safe template.

This is not necessary when reconfiguring an already installed module.

3. Edit the module configuration and scripts in SAFE/modules/AM/conf and
SAFE/modules/AM/bin

4. Optional

Run safekit module genkey -m AM or safekit module delkey -m AM

to create or delete cryptographic key for the module.

You do not have to create new cryptographic key on each reconfiguration of the

module.

5. Run safekit -H "node1,node2" -E AM

SafeKit User's Guide

162 39 A2 38MC 05

to (re)install the module AM and apply its configuration, which is get from the node

running the command (node1 in this example). It applies it on all listed nodes (node1

and node2).

9.9.4 Module snapshot with command line

The command line the module snapshot is described below. Replace AM by your module

name.

1. Log as administrator/root and open a command shell window on one node

For instance, log-in node1

2. Run safekit snapshot -m AM /tmp/snapshot_node1_AM.zip

To save the snapshot of the AM module in /tmp/snapshot_node1_AM.zip (absolute

path mandatory) locally (that is on node1).

Repeat all these commands on the other nodes in the cluster.

39 A2 38MC 05 163

10. Advanced administration and setup

 Section 10.1 “SafeKit environment variables and directories”

 Section 10.2 “SafeKit services”

 Section 10.3 “Firewall settings”

 Section 10.4 “Boot and shutdown setup in Windows”

 Section 10.5 “Linux Secure boot settings for SafeKit kernel modules”

 Section 10.6 “Antivirus settings”

 Section 10.7 “Encryption of module communications”

 Section 10.8 “SafeKit web service”

 Section 10.9 “SafeKit email notification agent”

 Section 10.10 “SNMP monitoring”

 Section 10.11 “Commands log of the SafeKit server”

10.1 SafeKit environment variables and directories

10.1.1 Global

Variable Description

SAFE

(given by safekit -p)

SafeKit installation directory:

• In Windows

C:\safekit on Windows if SystemDrive=C:

• In Linux

/opt/safekit

SAFEVAR

(given by safekit -p)

SafeKit working files directory:

SAFEVAR=C:\safekit\var on Windows and

SAFEVAR=/var/safekit on Linux

SAFEBIN

(given by safekit -p)

SafeKit binary installation directory:

C:\safekit\private\bin on Windows and

/opt/safekit/private/bin on Linux. Useful to

access SafeKit special commands (see section 14.5)

SAFE/Application_Modules

Installable .safe modules directory.

Once a module has been installed, the module is

located under SAFE/modules

SAFE/conf Contains the SafeKit license file.

10.1.2 Module

Variable Description

SafeKit User's Guide

164 39 A2 38MC 05

SAFEMODULE

The name of the module. The safekit command no

longer needs the module name parameter (-m AM = -m

SAFEMODULE)

SAFE/modules/AM and

SAFEUSERBIN

Editing a module, named AM, and its scripts is made

inside directory SAFE/modules/AM. There are

userconfig.xml file and application start and stop

scripts start_prim, stop_prim for a mirror,

start_both, stop_both for a farm (online edition or

through the SafeKit console)

After a module configuration, scripts are copied to the

runtime directory SAFE/private/modules/AM/bin: this

is the value of SAFEUSERBIN (do not modify scripts at

this place)

SAFEVAR/modules/AM and

SAFEUSERVAR

Module, named AM, working files directory

(SAFEUSERVAR=SAFEVAR/modules/AM)

Output messages of application scripts are in
SAFEVAR/modules/AM/userlog_year-month-

date_striptname.ulog. To check if there are errors

during start or stop of the application.

the userlog could disabled with <user

logging="none"> in userconfig.xml.

SAFEVAR/snapshot/modules/AM

Directory of dumps and configurations put in a

snapshot of the module named AM. See section 9.6 that

describes command lines for support.

The module tree (packaged into a .safe or installed into SAFE/modules/AM) is the

following:

AM Application module name

 conf

 userconfig.xml

User XML configuration file

 userconfig.xml.template

Internal use only

 modulekey.p12

Optional. Internal use only (encryption

of the module internal communications)

 modulekey.dat

Optional. Internal use only (encryption

of the module internal communications)

 Advanced administration and setup

39 A2 38MC 05 165

 bin

 prestart

Module script executed on module start

 start_prim or start_both

Module script to start the application in

mirror or farm module

 stop_prim or stop_both

Module script to stop the application in

mirror or farm module

 poststop

Module script executed on module stop

 web

 index.html
Obsolete (for the web console < SafeKit

8)

 manifest.xml

Internal use only

Since SafeKit 8, you cannot anymore customize the module quick configuration display

(since index.html is obsolete).

10.2 SafeKit services and daemons

See section 10.3.3.1 and section 10.3.3.2 for full details on SafeKit processes name and

ports used.

10.2.1 SafeKit services

In Windows, processes names have the .exe extension.

safeadmin

(safeadmin process)

SafeKit main service mandatory and started automatically at

boot.

safewebserver

(httpd process)

Service used by the web console, module checkers and

distributed command line interface.

Net-SNMP Agent

(safeagent process)

In Windows

Service that implements the SafeKit SNMP agent

For the commands to control SafeKit services, refer to section 9.1.

SafeKit User's Guide

166 39 A2 38MC 05

10.2.2 SafeKit daemons per module

In Windows, processes names have the .exe extension.

heart Manages the state automaton of the module and the recovery

procedures

errd

ipcheck

intfcheck

tcpcheck

pingcheck

modulecheck

Checkers that manage error detection

vipd Synchronizes a farm of servers

arpreroute
Manages arp requests for the virtual IP address (sends ARP

packet)

nfsadmin

nfsbox

reintegre

Manages the real-time replication and data synchronization

10.3 Firewall settings

If a firewall is active on the SafeKit server, you must add rules to allow network traffic:

• between servers for internal communication (global runtime and module specific)

• between servers and workstations running the SafeKit console

See below the command to configure the Microsoft Windows Firewall in Windows ;

firewalld/iptables in Linux. If you opted for automatic firewall configuration during the

SafeKit installation, this command has already been executed.

SAFE/private/bin/firewallcfg

add

where

SAFE=C:\safekit (if

%SYSTEMDRIVE%=C:) in

Windows

SAFE=/opt/safekit in Linux

On all SafeKit servers:

1. Open a PowerShell/shell window as

administrator/root

2. Run SAFE/private/bin/firewallcfg add

This configures the operating system firewall for

SafeKit.

For configuring other firewalls, refer to section 10.3.3 that details SafeKit processes

name and ports used.

 Advanced administration and setup

39 A2 38MC 05 167

10.3.1 Firewall settings in Linux

If you opted-in for automatic firewall configuration during SafeKit installation, you do not

have to apply the following procedure.

If you opted-out for automatic firewall configuration, you must configure the firewall.

When using the operating system firewall (firewalld/iptables), you may use the

firewallcfg command. It inserts (or remove) the firewall rules required by the SafeKit

services and modules.

Administrators should review conflicts with local policy before applying it.

SAFE/private/bin/firewall

cfg add

SAFE/private/bin/firewall

cfg del

where SAFE=/opt/safekit

Add (or delete) the firewalld or iptable firewall rules for

the SafeKit safeadmin and safewebserver services.

• SAFE/private/bin/firewallcfg add

Add firewall rules for safeadmin and
safewebserver

• SAFE/private/bin/firewallcfg del

Delete firewall rules for safeadmin and
safewebserver

SAFE/private/bin/firewall

cfg add AM

SAFE/private/bin/firewall

cfg del AM

where SAFE=/opt/safekit

Add (or delete) the firewalld or iptable firewall rules

for the SafeKit modules.

• SAFE/private/bin/firewallcfg add AM

Add firewall rules for the module named AM

This command must be applied after

the first configuration of the module,

and on next configurations if used

ports have changed (check it with the

command safekit module getports

-m AM).

• SAFE/private/bin/firewallcfg del AM

Delete firewall rules for the module named AM

10.3.2 Firewall settings in Windows

If you opted-in for automatic firewall configuration during SafeKit installation, you do not

have to apply the following procedures.

If you opted-out for automatic firewall configuration, you must configure the firewall.

When using the operating system firewall (Microsoft firewall), you may use the

firewallcfg command. It inserts (or remove) the firewall rules required by the SafeKit

services (safeadmin, safewebserver, safeacaserv and Net-SNMP Agent) and modules.

Administrators should review conflicts with local policy before applying it.

SAFE/private/bin/firewallcfg add

SAFE/private/bin/firewallcfg del

Add (or delete) the Microsoft firewall rules.

• SAFE/private/bin/firewallcfg add

SafeKit User's Guide

168 39 A2 38MC 05

where SAFE=C:\safekit (if

%SYSTEMDRIVE%=C:)

Add firewall rules for SafeKit core and

modules processes.

• SAFE/private/bin/firewallcfg del

Delete firewall rules for SafeKit core and

modules processes.

10.3.3 Other firewalls

If you use another firewall or want to check rules against local policy, the following lists

processes and ports used by SafeKit services and modules that may be useful to

configure the firewall.

10.3.3.1 List of processes

10.3.3.1.1 Processes performing local-only network exchanges

Processes for a mirror module

• errd: manages detection of process death

• nfsadmin, nfscheck: manage the file replication

Processes for a farm module

• errd: manages detection of process death

• heart: manages the recovery procedures

10.3.3.1.2 Processes performing external network exchanges

Processes common to all the SafeKit servers, one process by server, started at boot:

• safeadmin service (safeadmin process): main and mandatory administration

service

• safewebserver service (httpd process): web service for the console, for

<module> checkers and the distributed commands

• safecaserv (httpd process): web service for securing the web console with the

SafeKit PKI (optional)

• In Windows, Net-SNMP Agent service (safeagent process): SafeKit SNMP v2

agent (optional)

Processes for a mirror module (depending on its configuration):

• heart: manages the recovery procedures

• arpreroute: manages arp requests (sends ARP packet)

• nfsadmin, nfsbox, reintegre: manage the file replication and reintegration

• splitbraincheck: manage the split-brain detection (sends ICMP ping packets)

Processes for a farm module (depending on its configuration):

 Advanced administration and setup

39 A2 38MC 05 169

• vipd: synchronizes a farm of servers

• arpreroute: manages arp requests (sends ARP packet)

Processes for a mirror or a farm module depending on checkers configuration:

• intfcheck: for checking interface (interface checker configuration automatically

generated when <interface check=on>)

• pingcheck: for pinging an address (<ping> configuration)

• ipcheck: for checking a locally defined ip address (virtual ip checker

automatically generated when <virtual_addr check=on>)

• modulecheck: for checking a SafeKit module (<module> configuration)

• tcpcheck: for checking a TCP connection (<tcp> configuration)

10.3.3.2 List of ports

The following list ports used by SafeKit services and modules.

10.3.3.2.1 Ports used by services

• safeadmin

By default, remote access on UDP port 4800 (to communicate with safeadmin

instances on other SafeKit servers)

For changing this value , see section 12.1.3.

• safewebserver

Local and remote TCP access, by default, on port 9010 for HTTP or port 9453 for

HTTPS. For the ports value definition, see section 10.8.

This service is accessed locally and from remote SafeKit servers and remote

workstation running the SafeKit console.

• safecaserv (optional)

Local and remote access on TCP port 9001 by default. For the port value definition,

see section 11.3.1.9.5.

This service is accessed locally, and from remote SafeKit servers and remote

workstation running the HTTPS configuration wizard with the SafeKit PKI.

• Net-SNMP Agent (Windows only, optional)

Local and remote access on UDP port 3600 by default. For the port value definition,

see section 10.10.

10.3.3.2.2 Ports used by modules

When a module is configured on a SafeKit server, you can run the command safekit

module getports -m AM to list the external ports used by the module AM. For firewall

configuration, you must configure all SafeKit servers to enable communications targeted

at these ports.

SafeKit User's Guide

170 39 A2 38MC 05

The ports values for one module are automatically computed depending on its module id.

Run the command safekit module listid to list all the installed modules with their

name and id.

The following gives rules for computing ports values depending on the module id. When

checkers are configured for the module, you may also need to change the firewall

configuration according to the checkers configuration. You must enable all

communications on localhost between SafeKit processes.

For a mirror module

• Port used by heart

UDP port used for sending heartbeats between SafeKit servers

port=8888 +(id-1)

• Ports used by rfs (file replication)

TCP port used for replications requests between SafeKit servers

safenfs_port=5600 +(id-1)x4

To list ports used by the mirror module with id 1, run safekit module getports -m

mirror. It returns:

List of the ports used by SafeKit

Process Ports
safeadmin
 port UDP 4800

webconsole
 port TCP 9010
heart
 port UDP 8888
rfs
 safenfs_port TCP 5600

For a farm module

• Port used by farm: UDP port used for communications between all SafeKit nodes

port 4803 + (id-1)x3

To list ports used by the farm module with id 2, run safekit module getports -m

farm. It returns:

List of the ports used by SafeKit

Process Ports
safeadmin
 port UDP 4800
webconsole
 port TCP 9010
farm
 port UDP 4806

For configured checkers

 Advanced administration and setup

39 A2 38MC 05 171

• Ping checker for mirror or farm module

Change ICMP settings to allow ping at destination to the address defined into

the configuration.

• TCP checker for mirror or farm module

Allow TCP connections at destination to the address defined into the <tcp>

configuration if this address is not local.

• Module checker

Allow TCP connections at destination to 9010 port of the node running the module

that is checked.

• Split-brain checker

Change ICMP settings to allow ping at destination to the witness defined into the

<splitbrain> configuration.

10.4 Boot and shutdown setup in Windows

safeadmin service is configured for automatically starting on boot and stopping on

shutdown. In turn, this service starts modules configured for starting at boot and

shutdown all modules.

On some Windows platforms, the safeadmin boot start fails because the network

configuration is not ready, and the modules shutdown does not have time to complete

since the timeout for services shutdown is too short. If you encounter such problems,

apply one of the following procedures.

When using the SNMP agent, adapt the following procedures to set the

manual start of the Net-SNMP Agent service and include its start/stop into

SafeKit start-up (safekitbootstart.cmd) and shutdown

(safekitshutdown.cmd) scripts.

10.4.1 Automatic procedure

You can run the script as follow:

1. open a PowerShell window as administrator

2. cd SAFE\private\bin

3. run addStartupShutdown.cmd

This script sets the manual start for safeadmin service and adds default SafeKit start-up

(safekitbootstart.cmd) and shutdown (safekitshutdown.cmd) scripts as part of the

computer group policy start-up/shutdown scripts. If the script fails, apply the manual

procedure below.

10.4.2 Manual procedure

You must apply the following procedure that uses the Group Policy Object Editor.

1. set manual start for safeadmin service

2. start the MMC console with the mmc command line

3. File - Add/Remove Snap-in Add - "Group Policy Object Editor" - OK

4. under "Console Root"/"Local Computer Policy"/"Computer Configuration"/"Windows

Settings"/"Scripts (Start-up/Shutdown)", double click on "Start-up". Click on Add

SafeKit User's Guide

172 39 A2 38MC 05

then set for "Script Name:" c:\safekit\private\bin\safekitbootstart.cmd. This

script launches the safeadmin service.

5. under "Console Root"/"Local Computer Policy"/"Computer Configuration"/"Windows

Settings"/"Scripts (Start-up/Shutdown)", double click on "Shutdown". Click on Add

then set for "Script Name:" c:\safekit\private\bin\safekitshutdown.cmd. This

script shutdowns all running modules.

10.5 Linux Secure boot settings for SafeKit kernel modules

When Secure Boot is enabled in Linux, any kernel module must be signed, and the

signing key must be enrolled in UEFI. Since SafeKit relies on vip and tcpseq kernel

modules to implement load-balancing for farm modules, these kernel modules must also

be signed and enrolled. Otherwise, the kernel modules will fail to load during the module

startup with the following message into the module log:

| vipplug | E | Unable to load vip kernel extension

Moreover, when trying to load the vip module for instance, you’ll get the following error:

modprobe vip

modprobe: ERROR: could not insert 'vip': Required key not available

Since SafeKit 8.2.4, to use farm module with load-balancing with Secure Boot enabled,

follow the procedure described below. This procedure must be applied on all SafeKit

nodes and can be done before or after the farm module configuration.

1. Log as root and open a command shell window

2. Change to the directory /opt/safekit/kernel

3. Run the command make enroll

It will ask for the creation of a password. Remember this password for the step 5.

4. Reboot the server

5. At boot start, UEFI will ask for the enrolling of the new SafeKit signing key:

Accept and give the password created in step 3.

The procedure is needed only after the first reboot.

6. Once the reboot is completed, you can check that the SafeKit key has been enrolled

by running:

mokutil --list-enroll | grep SafeKit

 … SafeKit …

 Advanced administration and setup

39 A2 38MC 05 173

You can also check that the SafeKit vip kernel module can be loaded without errors

by running:

modprobe vip

For SafeKit < 8.2.4, follow the procedure described in Q009176.

10.6 Antivirus settings

Antiviruses may face detection challenges with SafeKit due to its close integration with

the OS, virtual IP mechanisms, real-time replication, and restart of critical services. It

may then be necessary to configure the antivirus to exclude certain directories and

processes. The list of directories and processes is provided below.

Directories

SAFE

SafeKit installation directory:

• In Windows

C:\safekit on Windows if SystemDrive=C:

• In Linux

/opt/safekit

SAFEVAR

SafeKit working files directories:

• In Windows

C:\safekit\var if SystemDrive=C:

• In Linux

/var/safekit

Replicated folders All replicated folders defined into mirror modules

Processes

The SafeKit processes for services and daemons are listed into the section 10.2.

Executables are in:

SAFE safekit command

SAFE/private/plugin/*/* Executables that are run on module state changes

SAFE/private/bin SafeKit executables

SAFE/web/bin SafeKit web service executables

10.7 Encryption of module communications

You can secure internal communications for the module, such as heartbeats and

replication, by creating cryptographic keys associated with the module. By default, these

https://support.evidian.com/knowledge_base/index.php?path=Global_Area/Q009176.htm%20

SafeKit User's Guide

174 39 A2 38MC 05

keys are generated by SafeKit with a “private” certification authority (SafeKit PKI). In

SafeKit <= 7.4.0.31, the generated key has a validity period of 1 year. See section

10.7.3.1 for solutions when the key expires.

Since SafeKit 7.4.0.16, you can also provide your own certificates generated with your

trusted certification authority (enterprise PKI or commercial PKI). See section 10.7.3.2

for details.

Since SafeKit 7.4.0.32, the module can be reconfigured with new keys while it is in

ALONE state (dynamic update).

When encryption is not properly configured (e.g.: not the same key on all

cluster nodes of the module), the module internal communications between

nodes are rejected. In this case, the module configuration is not identical on

all nodes. You must apply it again on all nodes. Then, you can check it by

running on each node the command safekit confinfo -m AM where AM is

the module name (see section 9.5).

The encryption resource reflects the current communication mode of the module:

"on"/"off" when encryption is active/not active. The resource name is

usersetting.encryption. To check the state of resources, see section 7.3.

10.7.1 Configuration with the SafeKit Web console

When configuring the module with the SafeKit web console, communication encryption is

enabled in the step 3 of the module configuration wizard (see section 3.3.2).

10.7.2 Configuration with the Command Line Interface

The commands line equivalent for configuring a module, named AM, with cryptographic

key are:

1. Stop the AM module on all nodes

2. On one node, log as administrator/root and open a command shell window

3. Run safekit module genkey -m AM

4. Run safekit -H "server1,server2" -E AM

where server1 and server2 are the nodes that implement the module

The commands line equivalent for re-configuring a module without cryptographic key

are:

1. Stop the AM module on all nodes

2. On one node, log as administrator/root and open a command shell window

3. Run safekit module delkey -m AM

4. Run safekit -H "server1,server2" -E AM

where server1 and server2 are the nodes that implement the module

For more details on commands, refer to section 9.5.

 Advanced administration and setup

39 A2 38MC 05 175

10.7.3 Advanced configuration

10.7.3.1 Advanced configuration with the SafeKit PKI

In SafeKit <= 7.4.0.31, the key for encrypting the module communication has a validity

period of 1 year. When it expires in a mirror module with file replication, the secondary

fails to reintegrate. You must re-configure the module with a new key, as explained in

SK-0084, for reverting to normal behavior. In SafeKit > 7.4.0.31, the validity period has

been set to 20 years.

If you cannot upgrade SafeKit, you can generate new keys with a longer validity period.

For this apply the following procedure:

1. Stop the AM module on all nodes

2. On one node, log as administrator/root and open a command shell window

3. Run safekit module genkey -m AM

4. Delete the file SAFE/modules/AM/conf/modulekey.p12

5. Change to the directory SAFE/web/bin

6. Run ./openssl req -config ../conf/ssl.conf -subj
"/O=SafeKiModule/CN=mirror" -new -x509 -sha256 -nodes -days 3650 -newkey

rsa:2048 -keyout pkey.key -out cert.crt

Set the -days value to the validity period you want

7. Run ./openssl pkcs12 -export -inkey ./pkey.key -in ./cert.crt -name
"Module certificate" -out modulekey.p12

This command requires to fill a password. Contact Evidian support to get the correct

value for the password

8. Delete the files pkey.key and cert.crt

9. Move the file modulekey.p12 into SAFE/modules/AM/conf

10. Run safekit -H "server1,server2" -E AM

where server1 and server2 are the nodes that implement the module

The module is configured, on the 2 nodes, with the new key and ready to start.

10.7.3.2 Advanced configuration with an external PKI

Since SafeKit 7.4.0.16, you can provide your own key generated with your trusted

certification authority (enterprise PKI or commercial PKI). For this apply the following

procedure:

1. Stop the AM module on all nodes

2. On one node, log as administrator/root and open a command shell window

3. Run safekit module genkey -m AM

4. Delete the file SAFE/modules/AM/conf/modulekey.p12

5. Append the Base-64 encoded X.509 certificate file (PEM format), for your certification

authority (certificate of the CA or certificate bundle of all the certificate authorities) to

the file SAFE/web/conf/cacert.crt

https://support.evidian.com/solutions/downloads/safekit/version_7.5/documentation/safekitknowledgebase.htm#SK-0084

SafeKit User's Guide

176 39 A2 38MC 05

6. Change to the directory SAFE/web/bin

7. Generate your certificate with the PKI with the subject set to
"/O=SafeKiModule/CN=mirror"

8. Copy the generated files pkey.key and cert.crt into the directory SAFE/web/bin

9. Run ./openssl pkcs12 -export -inkey ./pkey.key -in ./cert.crt -name
"Module certificate" -out modulekey.p12

This command requires to fill a password. Contact Evidian support to get the correct

value for the password

10. Delete the files pkey.key and cert.crt

11. Move the file modulekey.p12 into SAFE/modules/AM/conf

12. Run safekit -H "server1,server2" -E AM

where server1 and server2 are the nodes that implement the module

The module is configured, on the 2 nodes, with the new key and ready to start.

10.8 SafeKit web service settings

SafeKit comes with a web service, safewebserver, which runs on each SafeKit server. It

is a standard Apache web service that is mandatory for running:

• the web console (see section 3)

• the distributed command line interface (see section 9.8)

• the <module> checkers (see section 13.16)

safewebserver starts automatically at the end of SafeKit package install and on server

reboot. If you do not need the SafeKit web service and want to remove the automatic

boot start, refer to section 9.1.2.

The default configuration is HTTP with file-based authentication, initialized with:

• a single admin user that got the Admin role for the web console. The role can be

changed via configuration files

• a private rcmdadmin user to execute the distribute safekit command

The usernames and passwords for these users can be changed, if necessary, as described

in section 9.1.2.

10.8.1 Configuration files

The configuration of an instance of safewebserver on a SafeKit server is contained in the

SAFE/web/conf directory. It consists in standard Apache configuration files (see

http://httpd.apache.org). The configuration is split into many files, but for most common

configurations, only the main configuration file httpd.conf need to be modified.

http://httpd.apache.org/

 Advanced administration and setup

39 A2 38MC 05 177

• After changes, you must restart the service with the command: safekit

webserver restart (see section 9.1).

• Do not edit .default files since they are backups of delivered

configuration files.

The httpd.conf file consists essentially in a set of Define statements. Comment

character # disables the definition.

The mains Define are:

Connection port definition:

Define httpport 9010

Define httpsport 9453

Set the listening port in http and https mode. (See section 10.8.2 for usage).

User authentication definition:

Define usefile

Define useldap

Define useopenid

…

Select which user authentication to use. At most one must be defined. usefile is

the default. (See section 11.4 for details.)

Apache logging definition:

#Define Loglevel info

#Define accesslog

Uncomment these lines to enable the logging for debug purposes. Logging files

httpd.log and access.log are in SAFEVAR.

Session validity period definition:

Define SessionMaxAge 28800

Since SafeKit 8.2.1, the user is automatically logged out after 8 hours of inactivity

(28800 seconds). If necessary, adjust this value.

Other Define are self-documented in the httpd.conf file.

SafeKit User's Guide

178 39 A2 38MC 05

The other configuration files are listed below. Modifying one of them may cause problems

when upgrading SafeKit :

Global configuration httpd_main.conf

File based authentication and

role mapping
httpd.webconsolefileauth.conf

Form authentication

configuration
httpd.webconsoleformauth.conf

LDAP/AD authentication

configuration

httpd.webconsoleldap.conf

using a LDAP/AD server

OpenID Connect

authentication configuration

httpd.webconsoleopenidauth.conf

using an OpenID connect identity provider

HTTPS configuration
httpd.webconsolessl.conf

in SAFE/web/conf/ssl

User authentication configurations may optionally use group.conf (for HTTP) or

sslgroup.conf (for HTTPS) files in SAFE/web/conf for user to role mapping.

10.8.2 Connection ports configuration

By default, connect the web console with the URL http://host:9010. The SafeKit web

server will redirect to the appropriate section according to your security settings.

If you need to change the default value:

1. Edit SAFE/web/conf/httpd.conf and change the value of httpport or httpsport

variables.

2. Restart the service using the command safekit webserver restart.

The HTTP and HTTPS configurations cannot be active simultaneously. See section 11.3

for how to configure HTTPS.

The port value 9010(HTTP)/9453(HTTPS) is also used by the module checker. Therefore,

if the configuration of a module defines a <module> checker:

1. Edit the module configuration file userconfig.xml

2. Edit the port attribute and assign it to the new port value

<check>

 <module name="mirror">

 <to addr="192.168.1.31" port="9010"/>

 </module>

 </check>

3. Apply the new configuration of the module

10.8.3 HTTP/HTTPS and user authentication configuration

• The default configuration is for HTTP.

 Advanced administration and setup

39 A2 38MC 05 179

The default configuration is also set with file-based authentication, initialized with a

single admin user that got the Admin role.

• The HTTPS configuration requires the installation of certificates and the definition of

user authentication.

For a detailed description, see section 11.

To re-enable the HTTP configuration if it has been changed to HTTPS see section

11.2.1.1.

10.8.4 SafeKit API

Use Swagger UI to visualize and interact with the SafeKit API provided by the SafeKit

web service. For this, connect a browser at the URL http://host:9010/swagger-

ui/index.html. It may be useful to debug issues with the SafeKit web console and/or API.

10.9 SafeKit email notification agent

Since SafeKit 8.2.4, SafeKit offers a notification agent that sends emails for major events

on modules. These events are extracted from the system log (see section 10.12), which

is populated by the log messages of modules configured on the SafeKit server. Using this

feature requires that your company's IT team has set up an SMTP server that can be

accessed by the agent running on SafeKit nodes.

During the SafeKit installation, the notification agent is installed but disabled by default.

The following procedure is required to configure and enable it. Apply it on all SafeKit

nodes:

 SafeKit notification agent configuration described in section 10.9.1

It allows you to define the SMTP server, the email recipients, the selection of events

to be sent…

 Optional SMTP client credentials setup described in section 10.9.2

It allows you to define the username and password needed to send an email if

authentication is required by the SMTP server.

 Email sending test described in section 10.9.3

This allows you to verify that your configuration is functional for sending emails.

 SafeKit notification agent activation described in section 10.9.4

Once activated, major events from modules on this server will be automatically sent

by email to the configured recipients.

In Windows, PowerShell 5 is required, which is the default version, as it is

not compatible with PowerShell 7.

Below is an example of an email sent by the SafeKit notification agent set up on node1:

http://host:9010/swagger-ui/index.html
http://host:9010/swagger-ui/index.html

SafeKit User's Guide

180 39 A2 38MC 05

With the default agent configuration, when a module critical or state change event occurs

on node1, the agent gathers all other events within the following minute and sends them

in a single email.

In case of issues, refer to the section 7.20 for assistance.

10.9.1 SafeKit notification agent configuration

Follow the steps below to configure the SafeKit notification agent:

1. Open a PowerShell/shell window as administrator/root

2. Change directory to SAFE/notifications

where SAFE=C:\safekit in Windows (if %SYSTEMDRIVE%=C:), and

SAFE=/opt/safekit in Linux

3. Copy safenotif_conf.json.default to safenotif_conf.json

4. Edit safenotif_conf.json to set up your configuration

safenotif_conf.json is a self-documented configuration file in which you must at least

configure the fields in the following excerpt:

{

 // ...

 "emailNotifications": {

 // ...

 "sender": "noreply@it-smtp-server.my.company.com",

 "recipients": [

 "my.name@my.company.com"

],

 // ...

 },

 "smtp": {

 "host": "it-smtp-server.my.company.com",

 "port": 25,

 "protocol": "smtp+starttls"

 // ...

 }

}

Where:

• "sender" is the email address to send emails from

• "recipients" is the list of email addresses to send emails to

 Advanced administration and setup

39 A2 38MC 05 181

• "host" is the hostname or IP address of the SMTP server

• "port" is the port the SMTP server listens on

• "protocol" is the protocol to use to connect to the SMTP server. In this example, it is

set to an encrypted connection, initiated from a STARTTLS command.

By default, only critical messages and local state changes of the module are sent by

emails. See safenotif_conf.json to select other messages, if necessary, change the

sending delay or for other configuration options.

After upgrading SafeKit, you may need to reconfigure the notification agent if

its configuration file format has changed between versions.

You can check the safenotif_conf.json for common logic errors with:

SAFE/private/bin/safenotif -testconfiguration

It returns a failure if an error is detected. Fix it before proceeding to the next step.

10.9.2 SMTP client credentials setup for authentication

SMTP servers are usually configured to require SMTP clients to specify credentials

(username, password). The SafeKit notification agent (which embeds a SMTP client)

stores such credentials in the file system in a secure, encrypted way. For this follow the

steps below:

1. Open a PowerShell/shell window as administrator/root

2. Change directory to SAFE

where SAFE=C:\safekit in Windows (if %SYSTEMDRIVE%=C:), and

SAFE=/opt/safekit in Linux

3. Run ./private/bin/smtpcfg credentials set

This command prompts you to enter the username and password that correspond to

the email sender account.

These credentials will then be used by the SafeKit notification agent to send mails.

To reset the credentials, and consequently disable the authentication, run:

SAFE/private/bin/smtpcfg credentials none

10.9.3 Email sending test

Once the SafeKit notification agent configured (see section 10.9.1), and the SMTP

credentials set if authentication is required (see section 10.9.2), the following procedure

can be used to send a test e-mail, using this configuration:

1. Open a PowerShell/shell window as administrator/root

2. Change directory to SAFE

where SAFE=C:\safekit in Windows (if %SYSTEMDRIVE%=C:), and

SAFE=/opt/safekit in Linux

3. Run ./private/bin/safenotif -testemail

SafeKit User's Guide

182 39 A2 38MC 05

Here is a sample output of this command:

Sending email from noreply@it-smtp-server.my.company.com to

my.name@my.company.com with SMTP account noreply on server it-smtp-

server.my.company.com...

Email sending successful, check your mailbox(es).

Although the command is successful, it’s advisable to check the recipient’s mailbox that

you configured to ensure the email was properly received.

If the email test fails, resolve the issue before proceeding to the next step. Refer to the

section 7.20 for assistance.

10.9.4 SafeKit notification agent activation

Once you have ensured that your configuration is functional, apply the following

procedure to enable the notification agent:

1. Open a PowerShell/shell window as administrator/root

2. Change directory to SAFE

where SAFE=C:\safekit in Windows (if %SYSTEMDRIVE%=C:), and

SAFE=/opt/safekit in Linux

3. Run ./safekit notification enable

Once activated, major events from modules on this server will be automatically sent by

email to the configured recipients.

To deactivate the notification, run:

SAFE/safekit notification disable

To check the status of the notification agent, run:

SAFE/safekit notification status

10.10 SNMP monitoring

SafeKit could be monitored by snmp. Since version 8, snmp monitoring implementation

differs in Windows and Linux : In Windows, SafeKit use its own snmp agent service,

when in Linux, the operating system’s snmp agent is used.

10.10.1 SNMP monitoring in Windows

For using the SafeKit SNMP agent, you must:

1. configure it to start on boot, with the command

safekit boot [snmpon |

snmpoff | snmpstatus]
Controls the automatic start at boot of the Net-

SNMP Agent service ("on" or "off"; by default, "off")

2. add the corresponding firewall rule

When using the operating system firewall, the firewall has already been configured for

Net-SNMP Agent if you have applied the command:

SAFE/private/bin/firewallcfg add

3. start it with the command

 Advanced administration and setup

39 A2 38MC 05 183

safekit safeagent [start |

stop | restart | check]
Controls start/stop of the Net-SNMP Agent service

that implements the SafeKit SNMP agent.

The configuration of the Net-SNMP Agent is defined in the self-documented

SAFE/snmp/conf/snmpd.conf file. It is a standard net-snmp configuration file as

described in http://net-snmp.sourceforge.net. By default, the service is listening on UDP

agentaddress port 3600 and accepts read request from the public community and write

requests from the private community. Read requests are used to get module status and

write requests to run actions on the module.

You can change the default configuration according to your needs. When you modify

snmpd.conf, you must manually change the firewall rule and restart the service to load

the new configuration with: safekit safeagent restart.

Since SafeKit 8, the service name is Net-SNMP Agent instead of safeagent

in previous releases.

10.10.2 SNMP monitoring in Linux

Since SafeKit 8, Safekit did not come with its own snmp agent anymore, so the following

safekit commands are obsoleted in Linux: safeagent install, safeagent start,

safeagent stop, boot snmpon, boot snmpoff, boot snmpstatus.

Instead, it is possible to configure the standard snmpd Linux agent to access safekit mib:

1. Install net-snmp
dnf install net-snmp net-snmp-utils

2. If selinux is in enforced mode, you have to set snmpd in permissive mode for snmp

by :
semanage permissive -a snmpd_t

3. If firewall is active, you have to open the snmp ports with:
firewall-cmd --permanent --add-service snmp

firewall-cmd --reload

4. Edit /etc/snmp/snmpd.conf

Add the following lines :
pass .1.3.6.1.4.1.107.175.10 /opt/safekit/snmp/bin/snmpsafekit

view systemview included .1.3.6.1.4.1.107.175.10

Note : the “view systemview” line set the access rights. You could have to adapt it to

your general snmpd configuration.

5. Enable and Start the snmp agent
systemctl enable snmpd

systemctl start snmpd

10.10.3 The SafeKit MIB

The SafeKit MIB is common to Windows and Linux implementation. It is delivered in

SAFE/snmp/mibs/safekit.mib .

The SafeKit MIB is accessed with the following identifier (OID, prefix of SafeKit SNMP

variables): = enterprises.bull.safe.safekit (1.3.6.1.4.1.107.175.10).

SafeKit User's Guide

184 39 A2 38MC 05

The SafeKit MIB defines:

• The module table: skModuleTable

The index on the module table is the ID of the application module as returned by the

command safekit module listid.

Through the MIB, you can read and display the status of an application module on a

server (STOP, WAIT, ALONE, UP, PRIM, SECOND) or you can take an action on the

module (start, stop, restart, swap, stopstart, prim, second).

For example, the status of the module with ID 1 is read by an SNMP get to the

variable:
enterprises.bull.safe.safekit.skModuleTable.skModuleEntry.skModuleCurren

tState.1 = stop (0)

Use the snmpwalk command to check all MIB entries.

• The resource table: skResourceTable

Each element defines a resource as for instance the one corresponding to the network

interface checker "intf.192.168.0.0" and its status (unknown, init, up, down).

Example: SNMP get request to
enterprises.bull.safe.safekit.skResourceTable.skResourceEntry.skResourceNam

e.1.2 means name of resource 2 in application module 1.

10.11 Commands log of the SafeKit server

There is a log of the safekit commands ran on the server. It allows auditing the actions

performed on the server to help support for instance. The log records all the safekit

commands that are run and that modify the system such as a module install and

configuration, a module start/stop, the safekit webserver start/stop, …

The command log is stored in the SAFEVAR/log.db file in SQLite3 format. For viewing its

content:

• run the command safekit cmdlog

or

• click on the commands log tab into the web console

Below is the raw extract of this log:

| 2021-07-27 14:37:33.205122 | safekit | mirror | 6883 | START | config -m mirror
| 2021-07-27 14:37:33.400513 | cluster | mirror | 0 | I | update cluster state
| 2021-07-27 14:37:33.405597 | cluster | mirror | 0 | I | module state change on node centos7-
test3
| 2021-07-27 14:37:34.193280 | | | 6883 | END | 0
| 2021-07-27 14:37:34.718292 | cluster | mirror | 0 | I | update cluster state
| 2021-07-27 14:37:34.722080 | cluster | mirror | 0 | I | module state change on node centos7-
test4
| 2021-07-27 14:37:37.510971 | | | 6871 | END | 0
| 2021-07-27 14:38:05.092924 | safekit | mirror | 7017 | START | prim -m mirror -u
admin@10.0.0.103
| 2021-07-27 14:38:05.109368 | | | 7017 | END | 0

Each field has the following meaning:

• The 1st field in the log entry is the date and time of the message

 Advanced administration and setup

39 A2 38MC 05 185

• The next one is the type of the action

• The next one is the module name when the action is not global

• The next one is the pid of the process that runs the command. It is used as the

identifier of the log entry

• The next ones are START when the command starts and the command’s

arguments; or END when the command has finished with the return value.

10.12 SafeKit log messages in system log

Since SafeKit 8, SafeKit modules log messages are sent to system log too. To view them:

• In Windows, open a PowerShell window and run

Get-EventLog -Logname Application -Source Evidian.SafeKit that returns:

 47086 Nov 23 11:27 Information Evidian.SafeKit 1073873154 mirror | heart | Remote
state UNKNOWN Unknown...
 47085 Nov 23 11:27 Information Evidian.SafeKit 1073873154 mirror | heart | Resource
heartbeat.flow set to down by heart...
 47084 Nov 23 11:26 Information Evidian.SafeKit 1073873154 mirror | heart | Local
state ALONE Ready...
 47082 Nov 23 11:26 Warning Evidian.SafeKit 2147614977 mirror | heartplug | Action
alone called by heart : remote stop...
 47081 Nov 23 11:25 Information Evidian.SafeKit 1073873154 mirror | heart | Remote
state PRIM Ready...
 47080 Nov 23 11:25 Information Evidian.SafeKit 1073873154 mirror | heart | Local
state SECOND Ready...
 47079 Nov 23 11:25 Information Evidian.SafeKit 1073873154 mirror | rfsplug |
Reintegration ended (default)...

• In Linux, open a shell window and run

journalctl -r -t safekit that returns:

Nov 23 15:22:43 localhost.localdomain safekit[3689940]: mirror | heart | Local state ALONE
Ready
Nov 23 15:22:43 localhost.localdomain safekit[3689940]: mirror | heart | Local state PRIM
Ready
Nov 23 15:16:48 localhost.localdomain safekit[3689940]: mirror | heart | Local state ALONE
Ready
Nov 23 15:16:48 localhost.localdomain safekit[3690096]: mirror | userplug | Script start_prim >
userlog_2023-11-23T151648_start_prim.ulog
Nov 23 15:16:48 localhost.localdomain safekit[3690066]: mirror | rfsplug | Uptodate replicated
file system
Nov 23 15:16:24 localhost.localdomain safekit[3689940]: mirror | heart | Remote state
UNKNOWN Unknown

SafeKit User's Guide

186 39 A2 38MC 05

 Securing the SafeKit web service

39 A2 38MC 05 187

11. Securing the SafeKit web service

 Section 11.1 “Overview”

 Section 11.2 “HTTP setup”

 Section 11.3 “HTTPS setup”

 Section 11.4 “User authentication setup”

11.1 Overview

The SafeKit web service is mainly used by:

• the web console (see section 3)

• the distributed command line interface (see section 9.8)

SafeKit provides different setups for this web service to enhance the security of the

SafeKit web console and distributed commands.

Protocol Authentication
Role

management

✓ HTTP

✓ HTTPS

✓ None (http only)

✓ File based

✓ LDAP/AD

✓ OpenID Connect

✓ Admin

✓ Control

✓ Monitor

The most secure setups are based on HTTPS and user authentication. SafeKit provides a

“private” certification authority (the SafeKit PKI). This allows SafeKit to be quickly

secured without the need for an external PKI (enterprise PKI or commercial PKI) that

provides trusted certification authority.

SafeKit offers also optional role management based on 3 roles:

Admin role

This role grants all administrative rights by allowing access to

 Configuration and Monitoring in the navigation sidebar

Control role

This role grants monitoring and control rights by allowing access only to

Monitoring in the navigation sidebar

Monitor role

This role grants only monitoring rights, prohibiting actions on modules

(start, stop…) in Monitoring in the navigation sidebar.

SafeKit User's Guide

188 39 A2 38MC 05

11.1.1 Default setup

The default setup is the following:

Setup Protocol
Authentication

Role management

Default ✓ HTTP

✓ File-based authentication

(username/password stored in an

Apache file)

✓ Initialization with a single user

named admin with the Admin role

 To configure, see section 11.2.1

11.1.2 Predefined setups

The predefined setups are as follows:

Setup Protocol
Authentication

Role management

Unsecure ✓ HTTP

✓ No authentication

✓ Same role for all users

For troubleshooting purpose only.

 To configure, see section 11.2.2

File-

based

✓ HTTP

✓ HTTPS

To configure HTTPS with:

 the SafeKit PKI, see section

11.3.1

 an external PKI, see section

11.3.2

✓ username/password stored in a

local Apache file

✓ Optional role management stored in

a local Apache file

 To configure, see section 11.4.1

LDAP/AD

✓ HTTP

✓ HTTPS

To configure HTTPS with:

 the SafeKit PKI, see section

11.3.1

✓ LDAP/AD authentication

✓ Optional role management

 To configure, see section 11.4.2

 Securing the SafeKit web service

39 A2 38MC 05 189

 an external PKI, see section

11.3.2

OpenID

Connect

✓ HTTPS

To configure HTTPS with:

 the SafeKit PKI, see section

11.3.1

 an external PKI, see section

11.3.2

✓ OpenID Connect authentication

✓ Optional role management

 To configure, see section 11.4.3

On Linux, for all files added under SAFE/web/conf, change their rights with:

chown safekit:safekit SAFE/web/conf/<filename>

chmod 0440 SAFE/web/conf/<filename>.

11.2 HTTP setup

By default, after the SafeKit install, the web service is configured for HTTP with file-based

authentication that must be initialized.

This default configuration can be extended as described in section 11.2.1.

It can also be replaced by the unsecure setup described in section 11.2.2 or anyone of

the predefined setups.

11.2.1 Default setup

The default setup relies on HTTP with file-based authentication. It requires some

initialization described below. It is a mandatory step.

This default configuration can be extended:

• to add users and assign them a role as described in section 11.4.1.1

• to switch to HTTPS with:

 the SafeKit PKI described in section 11.3.1

 an external PKI described in section 11.3.2

After the installation of SafeKit, the configuration and restart of the web service is not

necessary since this is the default configuration and the web service has been started

with it.

11.2.1.1 Reset to default HTTP Setup

If you have changed the default user authentication configuration and want to revert to

it, see section 11.4.1.

SafeKit User's Guide

190 39 A2 38MC 05

If you want to revert to HTTP from HTTPS, on all SafeKit servers:

1. Remove SAFE/web/conf/ssl/httpd.webconsolessl.conf

2. Run safekit webserver restart

(where SAFE=C:\safekit in Windows if System Drive=C: and SAFE=/opt/safekit in

Linux).

You can also run the command SAFE/web/bin/rmcerts, which, in addition to performing

the previous operations, deletes all files related to certificates.

11.2.1.2 Initialization for the web console and distributed command

SafeKit provides a command to get the web console and distributed commands up and

running quickly.

If you opted-in for automatic configuration during SafeKit package installation, the

initialization has already been done.

If you opted-out for automatic configuration, you must execute this command.

In both cases, you will have to give the password value, pwd for the admin user.

SAFE/private/bin/webservercfg

-passwd pwd

where

SAFE=C:\safekit (if

%SYSTEMDRIVE%=C:) in Windows

SAFE=/opt/safekit in Linux

On all nodes:

1. Open a PowerShell/shell window as

administrator/root

2. Run SAFE/private/bin/webservercfg -
passwd pwd

pwd is the password value

You must set the same password on all nodes.

The password must be identical on all nodes that belong to the same SafeKit

cluster. Otherwise, web console and distributed commands will fail with

authentication errors.

Once this initialization is done on all the cluster nodes:

• you can authenticate in the web console with the name admin and the password you

provided. The role is Admin by default (unless you change the default behavior by

providing the group.conf file as described in section 11.4.1.1)

On authentication failure in the web console, you may need to reinitialize the admin

password. For this, run again SAFE/private/bin/webservercfg -passwd pwd on

all nodes.

• you can run distributed commands. It is based on a dedicated user rcmdadmin with

the Admin role. It is managed in a different, private user file that you do not have to

change.

On authentication failure for distributed commands, you may need to reset

rcmdadmin password. To reset only this one, without changing the admin password,

run SAFE/private/bin/webservercfg -rcmdpasswd pwd on all nodes.

 Securing the SafeKit web service

39 A2 38MC 05 191

11.2.1.3 Test the web console and distributed command

The setup is complete; you can now test that it is operational.

• Test the web console

1. Start a browser on the user’s workstation

2. Connect it to the default URL http://host:9010 (where host is the name or Ip

address of one of the SafeKit nodes)

3. In the login page, enter admin as user’s name and the password you gave on

initialization (the value for pwd)

4. The loaded page authorizes accesses that corresponds to the Admin role by

default

• Test the distributed command

1. Connect on S1 or S2 as administrator/root

2. Open a system console (PowerShell, shell, …)

3. Change directory to SAFE

4. Run safekit -H "*" level

that should return the level for all nodes

11.2.2 Unsecure setup based on identical role for all

It is based on the configuration of a single role that is applied to all users without

requiring authentication. This solution can only be implemented in HTTP and is

incompatible with user authentication methods. It is intended to be used for

troubleshooting only.

11.2.2.1 Configure and restart the web service

To configure where SAFE=C:\safekit in Windows if System Drive=C: ; and

SAFE=/opt/safekit in Linux):

On S1 and S2:

1. edit SAFE/web/conf/httpd.conf file

2. comment all authentication variants (usefile, useldap,

useopenid)

#Define usefile

…

#Define useldap

…

#Define useopenid

3. select the desired role by uncommenting the associated line

(httpadmin for Admin role, httpcontrol for Control role) ; if

both lines are commented, the default role is Monitor.

Define httpadmin

#Define httpcontrol

http://servername:9010/

SafeKit User's Guide

192 39 A2 38MC 05

On S1 and S2, disable HTTPS if you had configured it:

4. remove the file
SAFE/web/conf/ssl/httpd.webconsolessl.conf

On S1 and S2:

5. run safekit webserver restart

11.2.2.2 Test the web console and distributed command

The setup is complete; you can now test that it is operational.

• Test the web console

1. Start a browser on the user’s workstation

2. Connect it to the default URL http://host:9010 (where host is the name or Ip

address of one of the SafeKit nodes)

3. The loaded page authorizes only the actions corresponding to the selected role

• Test the distributed command

1. Connect on S1 or S2 as administrator/root

2. Open a system console (PowerShell, shell, …)

3. Change directory to SAFE

4. Run safekit -H "*" level

that should return the level for all nodes

11.3 HTTPS setup

The HTTPS web service relies on the existence of a set of certificates listed below:

The certificate of the Certification Authority CA used to issue

the server certificate for S1 and S2

The server certificate of S1 and S2 used to assert the nodes’

identity

Apply one of the following 2 procedures to configure HTTPS and associated certificates:

 section 11.3.1 “HTTPS setup using the SafeKit PKI”

Go to this section to quickly setup HTTPS with the SafeKit “private” certification

authority.

 section 11.3.2 “HTTPS setup using an external PKI”

Go to this section to setup HTTPS with an external PKI (enterprise PKI or commercial

PKI) that provides trusted certification authority.

http://servername:9010/

 Securing the SafeKit web service

39 A2 38MC 05 193

At the end of HTTPS setup, you must implement one of the authentication methods

described in section 11.4.

11.3.1 HTTPS setup using the SafeKit PKI

Verify that the system clock is set to the current date and time on all SafeKit

nodes and workstations that will run the HTTPS SafeKit web console.

Certificates are timestamped, and a time difference between systems may

have an impact on certificate validity.

11.3.1.1 Choose the Certificate Authority server

First, choose one SafeKit node to act as the Certificate Authority server. The selected

node will be hereafter called the CA server. The other cluster nodes are called non-CA

server. Then go through all the next subsections to activate the HTTPS configuration

with the SafeKit PKI.

11.3.1.2 Start the CA web service on the CA server

On the CA server:

1. Log as administrator/root and open a command shell window

2. Change to the directory SAFE/web/bin

3. Run the command ./startcaserv

When prompted, enter a password to protect the access to this service for the

CA_admin user (for instance, PasW0rD). This command starts the safecaserv service.

Remember this password since it will be required to connect to this service in

next steps.

The CA web service running on the first server is also accessed by the

additional non-CA servers.

Since the service listens to TCP port 9001, make sure TCP port 9001 is not

used, and is allowed in the firewall configuration. On Linux, the TCP 9001

port is automatically opened in local firewall by the startcaserv command.

In Windows, the SAFE/private/bin/firewallcfg add command opens

safecaserv service communications.

11.3.1.3 Generate Certificates on the CA server

During this step, the environment for generating certificates is set up: certificate

authority, local server and client certificates are created; and server-side certificates are

installed in their expected location.

On the CA server:

1. Log as administrator/root and open a command shell window

2. Change to the directory SAFE/web/bin

3. List server DNS names and IP addresses

SafeKit User's Guide

194 39 A2 38MC 05

By default, the server certificate includes all the locally defined IP addresses, DNS

names and host name. They are listed into the files: SAFE/web/conf/ipv4.json and

SAFE/web/conf/ipv6.json and SAFE/web/conf/ipnames.json.

For building these files, run the command:

• In Linux

./getipandnames

• In Windows

./getipandnames.ps1

If the service will be accessed using another DNS name or IP address, edit

the corresponding file to insert the new value before executing the initssl

command. This is required for instance in the clouds using NAT, where the

server has a public address mapped on a private address.

4. Run the command:

./initssl sca

 This command :

• Create a CA certificate conf/ca/certs/cacert.crt and its associated key
conf/ca/private/cacert.key

• Create server certificate conf/ca/certs/server_<HOSTNAME>.crt and its

corresponding key conf/ca/private/server_<HOSTNAME>.key

• Install the CA certificate, server certificate and key in the conf directory

This command creates a Certificate Authority certificate with the default

subject name (that is “SafeKit Local Certificate Authority”). To customize the

subject name, run the command with an extra parameter:

./initssl sca "/O=My Company/OU=My Entity/CN=My Company Private

Certificate Authority".

11.3.1.4 Generate certificates on non-CA server

During this step, on non-CA servers, local certificate requests are created, signed

certificates are retrieved from the CA server, and finally certificates are installed at their

expected locations.

Apply the following procedure sequentially on each non-CA servers:

1. Log on as administrator/root and open a command shell window

2. Change to the directory SAFE/web/bin

3. List server DNS names and IP addresses

By default, the server certificate includes all the locally defined IP addresses, DNS

names and host name. They are listed into the files: SAFE/web/conf/ipv4.json,

SAFE/web/conf/ipv6.json and SAFE/web/conf/ipnames.json. For building these

files, run the command:

• In Linux

./getipandnames

• In Windows

 Securing the SafeKit web service

39 A2 38MC 05 195

./getipandnames.ps1

If the service will be accessed using another DNS name or IP address, edit

the corresponding file to insert the new value before executing the initssl

command. This is required for instance in the clouds using NAT, where the

server has a public address mapped on a private address.

4. Run the command:

./initssl req https://CAserverIP:9001 CA_admin

where CAserverIP is the DNS name or IP address of the CA server.

Then enter, each time it is required, the password you specified when you started the

CA web service on the CA server (for instance, PasW0rD)

Or

./initssl req https://CAserverIP:9001 CA_admin:PasW0rD

If necessary, set the environment variables HTTPS_PROXY and HTTP_PROXY to

adequate values.

If you get the error "Certificate is not yet valid", it means the system clock of

the server is not synchronized with the system clock of the CA server. You

should synchronize your server clocks and re-run the initssl command if

the time difference is not acceptable.

11.3.1.5 Enable HTTPS on CA server and non-CA server

To enable HTTPS, on all SafeKit servers:

1. copy SAFE/web/conf/httpd.webconsolessl.conf to
SAFE/web/conf/ssl/httpd.webconsolessl.conf

2. On Linux run :
chown safekit:safekit SAFE/web/conf/ssl/httpd.webconsolessl.conf

a. chmod 0440 SAFE/web/conf/ssl/httpd.webconsolessl.conf

3. run safekit webserver restart

(where SAFE=C:\safekit in Windows if System Drive=C: and SAFE=/opt/safekit in

Linux)

11.3.1.6 Configure the firewall on CA server and non-CA server

When the SafeKit web service runs in HTTPS mode, it is safe to allow network

communication with this server and configure the firewall. For this, apply the instructions

described in section 10.3.

11.3.1.7 Set the HTTPS SafeKit Web console

If the CA certificate has not been imported, the browser issues security alerts when the

user connects to the web console with his client certificate. If the import has not already

been done, apply the procedure below in Windows:

1. Log-in the user’s workstation

2. Download from the CA server the CA certificates (cacert.crt file) located into
SAFE/web/conf/ca/certs.

SafeKit User's Guide

196 39 A2 38MC 05

3. Click on the downloaded

cacert.crt file for opening the

certificate window. Then click on

Install Certificate button

4. It opens the Certificate Import

Wizard. Select Current User and

click on the Next button

5. Browse stores to select

the Trusted Root

Certification Authorities

store. Then click on Next

button

6. Then complete the

certificate import.

 Securing the SafeKit web service

39 A2 38MC 05 197

11.3.1.8 Stop the CA web service on CA server

Once all SafeKit servers have been configured, it is recommended to bring the CA web

service (safecaserv service) offline on the CA server, to limit the risk of accidental or

malicious access.

For stopping the SafeKit CA web service with the command line:

1. Log as administrator/root and open a command shell window

2. Change to the directory SAFE/web/bin

3. Run the command ./stopcaserv

On Windows, this command also removes the service entry to prevent any

accidental start of the service afterwards. On Linux, the 9001 port is

automatically closed on local firewall.

When all foreseeable certificate generation and installation is done, it is a good practice

to make sure files unnecessary at production time are not accessible. This step is not

mandatory.

The files that constitute the CA, i.e., the SAFE/web/conf/ca file tree (especially the

private keys stored under SAFE/web/conf/ca/private/*.keys) should be stored for

future use on a removable storage media and removed from the server. Store the

removable media in a secure place (i.e., a vault). This also applies to the files located

under the SAFE/web/conf/ca directory of non-CA servers. The CA files should be

restored into the same location before using the CA again (for example, if adding a new

SafeKit cluster node).

11.3.1.9 SafeKit PKI advanced configuration

11.3.1.9.1 Removing certificates

If you want to revert to HTTP from HTTPS and remove all files related to certificates, on

all SafeKit servers, run SAFE/web/bin/rmcerts(where SAFE=C:\safekit in Windows if

System Drive=C: and SAFE=/opt/safekit in Linux). This command also restarts the

safewebserver service.

11.3.1.9.2 Renewing certificates

Every certificate has an expiration date. The default expiration date of the CA certificate

is set to 20 years after the CA installation date. The default expiration date of the server

certificates is set to 20 years after the certificate request date.

Expired server certificates will trigger warnings when the browser connects to the server.

Expired CA certificates cannot be used to validate issued certificates.

It is possible to renew certificates using the original certificate requests and the private

keys stored under the SAFE/web/conf/ca directory tree. You may also create a new

certificate request using the existing private key. The procedure to do so is beyond the

scope of this document, see openssl (or your certificate authority) documentation.

Creating a new set of certificates (and private keys) will have the side effect of renewing

all certificates. To create a new set of certificates:

1. Erase the web/conf/ca directory on all SafeKit servers related to the CA, including

the CA SafeKit server itself

2. Suppress existing certificates from the client machines certificate stores

SafeKit User's Guide

198 39 A2 38MC 05

3. Apply the full procedures described in section 11.3

11.3.1.9.3 Revoking certificates

It is possible to modify the SafeKit web service configuration to use a CRL containing the

revoked certificates list. Setting up such a configuration is beyond the scope of this

document. Refer to the Apache and openssl documentation.

Creating a new set of certificates and replacing the old set with the new one will have the

side effect of effectively revoking the previous certificate set, since the CA certificate is

different.

11.3.1.9.4 Commands for certificate generation

These commands are located, and must be run from, the SAFE/web/bin directory.

All paths below are relative to SAFE/web directory.

initssl sca [<subject>]

Parameters

<Subject>: the optional CA certificate subject, that identify in human readable form the

owner of the CA.

Examples

initssl sca "/O=My Company/OU=My Unit/CN=My Company Private Certificate

Authority"

Description

This command :

• Create a CA certificate conf/ca/certs/cacert.crt and its associated key
conf/ca/private/cacert.key

• Create server certificate conf/ca/certs/server_<HOSTNAME>.crt and its

corresponding key conf/ca/private/server_<HOSTNAME>.key

• Install the CA certificate, server certificate and key in the conf directory

It initializes a conf/ca file tree needed for the SafeKit PKI related commands.

Note that the best practice is to protect private keys with a password, but it

needs more complex configuration on the server and is beyond the scope of

this document. See the Apache and OpenSSL documentation for more

information.

initssl rca

Description

As initssl sca, but reuse the existing CA infrastructure to reissue the server certificate

and key (re)install the CA certificate , server certificate and key in the conf directory

initssl req <url> <user>[:<password>]]

Parameters

• <url>: URL of the CA service. (https://CA_server:9001)

• <user>,<password>: user and password used to authenticate against the CA web

service.

 Securing the SafeKit web service

39 A2 38MC 05 199

<user> preconfigured value is CA_admin. <password> is the one entered by the

administrator at the start of CA web service. If these optional field are not present,

the password will be asked interactively several times, when needed.

Example

initssl req https://192.168.0.1:9001 CA_admin:PasW0rD

Description

This command :

• Creates a certificate request for a server certificate that includes all the locally

defined IP addresses and DNS names. The certificate request is stored in

conf/ca/private/server_<hostname>.csr. The corresponding key is stored in

conf/ca/private/server_<hostname>.key.

• Creates a certificate request for a client certificate with the Admin role (to be used

by the distributed commands). The certificate request is stored in

conf/ca/private/user_Admin_<hostname>.csr. The corresponding key is stored

in conf/ca/private/user_Admin_<hostname>.key.

• Retrieves the CA certificate from the CA server

• Retrieves signed certificates corresponding to the certificate requests above, from

the CA server (using provided login)

• Installs certificates and keys in the conf directory

• Checks certificates are OK

If no <url> is given, the command stops after having generated the certificate requests

corresponding to:

• The local server, in the conf/ca/private/server_<hostname>.csr

• An Admin role client certificate, in
conf/ca/private/user_Admin_<hostname>.csr

Those certificate requests are stored in a base64 encoded file ready to be submitted to

an external certificate authority such as Microsoft Active Directory Certificate Services

(refer to the Microsoft documentation on how to submit a base64 encoded certificate

request file).

makeusercert <name> <role>

Parameters

<name> is the subject's CN name of the certificate, usually the subject's username.

<role> is subject's role as a console user. The valid value is Admin or Control or

Monitor.

Examples

makeusercert administrator Admin

makeusercert manager Control

makeusercert operator Monitor

Description

Creates a client certificate request (and certificate + pkcs12 file containing certificate and

key if started on the CA SafeKit server) for the <name> and <role>.

SafeKit User's Guide

200 39 A2 38MC 05

When the pkcs12 file is generated, the command asks twice for a password to protect the

file. The generated unencrypted private key is stored into

conf/ca/private/user_<role>_<name>.key file. If applicable, the generated certificate

and pkcs12 files are stored into conf/ca/certs/user_<role>_<name>.crt and

conf/ca/private/user_<role>_<name>.p12 files respectively.

Client certificates could be used as an authentication method on an HTTPS server. They

are transmitted to the web service by the browser and verified on the server as part of

the HTTPS connection handshake. A certificate corresponding to the desired role must be

installed in the browser certificate store before the SafeKit web console can be used.

11.3.1.9.5 SafeKit CA web service

The SafeKit CA web service configuration is stored in

SAFE/web/conf/httpd.caserv.conf file.

This service implements limited PKI.

CA certificates are accessible at the https://CAserverIP>:9001/certs/<certificate

name>.crt URL.

For example, the CA certificate is accessible at

https://CAserverrIP>:9001/certs/cacert.crt.

Certificate signature requests are processed by posting a form at the URL: https://<CA

server IP>:9001/caserv .

The form takes the following parameters:

• action = signrequest

• name = <certificate name>

• servercsr = <file content of the server certificate request>

Or

• usercsr = <file content of the client certificate request>

11.3.2 HTTPS setup using an external PKI

Apply steps below to setup HTTPS with your trusted certification authority (your

enterprise PKI or commercial PKI).

11.3.2.1 Get and install server certificates

11.3.2.1.1 Get certificate files

You must get server certificates from the PKI with the expected format.

The certificate of the Certification Authority CA used to issue the

server certificates

The server certificate to assert the S1 identity.

The server certificate to assert the S2 identity.

 Securing the SafeKit web service

39 A2 38MC 05 201

s1.crt

s2.crt

Base-64 encoded X.509 certificate file (PEM format).

The subfield CN (Common Name) into the subject field, or the Subject

Alternative Name field of the certificate, must contain :

• S1 name(s) and/or IP address(es) for s1.crt

• S2 names and/or IP address(es) for s2.crt

See the example in section 11.3.2.1.3.

Be aware that you must provide all names

and/or IP addresses, for S1 and S2, which are

used for HTTPS connections:

• those included into the SafeKit cluster

configuration file

• Those used in the browser URL to load the

web console from a cluster node, and which

are not present into the cluster configuration

s1.key

s2.key

The private, *unencrypted* key corresponding to the certificates

s1.crt and s2.crt

11.3.2.1.2 Install files in SafeKit

Install the certificates as follow (where SAFE=C:\safekit in Windows if System

Drive=C: ; and SAFE=/opt/safekit in Linux):

s1.crt

s1.key

On S1:

1. copy s1.crt to SAFE/web/conf/server.crt

2. copy s1.key to SAFE/web/conf/server.key

s2.crt

s2.key

On S2:

3. copy s2.crt to SAFE/web/conf/server.crt

4. copy s2.key to SAFE/web/conf/server.key

5. On Linux, on S1 and S2, run:

chown safekit:safekit SAFE/web/conf/server.crt SAFE/web/conf/server.key

chmod 0440 SAFE/web/conf/server.crt SAFE/web/conf/server.key

You can check the installed certificates with:

cd SAFE/web/bin

checkcert -t server

It returns a failure if an error is detected.

SafeKit User's Guide

202 39 A2 38MC 05

You can check that the certificate contains some DNS name or IP address with:

checkcert -h "DNS name value"

checkcert -i "Numeric IP address value"

11.3.2.1.3 Example

Consider the following architecture:

The corresponding SafeKit cluster configuration file, SAFEVAR/cluster/cluster.xml

must contain these values into addr field:

<?xml version="1.0"?>

<cluster>

<lans>

 <lan name="default">

 <node name="s1" addr="10.0.0.10"/>

 <node name="s2" addr="10.0.0.11"/>

 </lan>

 <lan name="private">

 <node name="s1" addr="10.1.0.10"/>

 <node name="s2" addr="10.1.0.11"/>

 </lan>

</lans>

</cluster>

The server certificates must contain the same values (DNS names and/or IP addresses)

as those in the cluster configuration and the values used to connect the web console. If

not, the SafeKit web console and distributed commands will not work properly.

To check that the certificate file is correct:

1. Copy the .crt (or .cer) file on a Windows workstation

2. Double click on this file to open it with Crypto Shell Extensions

3. Click on the Details tab

4. Verify the Subject Alternative Name field

If you prefer the command line interface, you can run on each the SafeKit

node:

SAFE/web/bin/openssl.exe x509 -text -noout -in
SAFE/web/conf/server.crt

and look for the value after Subject Alternative Name.

 Securing the SafeKit web service

39 A2 38MC 05 203

11.3.2.2 Get and install the CA certificate

11.3.2.2.1 Get certificate file

You must get these certificates from the PKI with the expected format.

cacert.crt

The Certification Authority CA certificate

used to issue the server certificates.

Base-64 encoded X.509 certificate file

(PEM format).

The chain of certificates for the root and

intermediates CA

Server certificates for S1

and S2

If you have trouble retrieving this file from the PKI, you can build it using the procedure

described in section 7.19.

11.3.2.2.2 Install file in SafeKit

Install certificates files as follow (where SAFE=C:\safekit in Windows if System

Drive=C: ; and SAFE=/opt/safekit in Linux):

cacert.crt

On S1 and S2:

1. copy cacert.crt to SAFE/web/conf/cacert.crt

2. On Linux, run:

chown safekit:safekit SAFE/web/conf/cacert.crt

chmod 0440 SAFE/web/conf/cacert.crt

You can check the installed certificates with:

cd SAFE/web/bin

checkcert -t CA

SafeKit User's Guide

204 39 A2 38MC 05

It returns a failure if an error is detected.

You must also check that the cacert.crt contains the chain of certificates for the root

and intermediates Certification Authorities.

11.3.2.3 Configure and restart the web service

To enable HTTPS, on all servers :

1. copy SAFE/web/conf/httpd.webconsolessl.conf to
SAFE/web/conf/ssl/httpd.webconsolessl.conf

2. On Linux, run :

chown safekit:safekit SAFE/web/conf/ssl/httpd.webconsolessl.conf

chmod 0440 SAFE/web/conf/ssl/httpd.webconsolessl.conf

3. run safekit webserver restart

where SAFE=C:\safekit in Windows if System Drive=C: ; and SAFE=/opt/safekit in

Linux

11.3.2.4 Change the firewall rules

You can run the firewallcfg command to change the firewall rules. It set SafeKit rules

into the operating system default firewall (in Windows, Microsoft Windows Firewall ;

in Linux, firewalld or iptables).

Firewall

On S1 and S2:

1. run SAFE/private/bin/firewallcfg add

where SAFE=C:\safekit in Windows if System Drive=C: ;

and SAFE=/opt/safekit in Linux

Don’t run this command if you want to configure the firewall yourself or if you use a

different firewall than the system one. For the list of SafeKit processes and ports, see

section 10.3.

11.4 User authentication setup

Setup one of the following user authentication methods:

 section 11.4.1 “File-based authentication setup”

 section 11.4.2 “LDAP/AD authentication setup”

 section 11.4.3 “OpenID authentication setup”

At the end of this setup, you can start using the secure SafeKit web console.

11.4.1 File-based authentication setup

File-based authentication setup can be applied in HTTP or HTTPS. It relies on the

following files:

 Securing the SafeKit web service

39 A2 38MC 05 205

User file configuration that defines authorized users

Optional file to restrict the user’s role.

If the group.conf file is not present, all authenticated users will have

the Admin role.

11.4.1.1 Manage users and groups

The users and groups must be identical on S1 and S2, as well as passwords. It is defined

by the files user.conf and group.conf into SAFE/web/conf directory (SAFE=C:\safekit

in Windows if System Drive=C: ; and SAFE=/opt/safekit in Linux).

During the default setup initialization, described in section 11.2.1, the user

named admin has been created and thus is present into user.conf. You can

decide to remove this user if you create others.

1. Create a new user

Users are created with the SAFE/web/bin/htpasswd command.

For instance, to add the new user manager and set its password managerpassword,

run:

SAFE/web/bin/htpasswd -bB SAFE/web/conf/user.conf manager managerpassword

The new user is inserted into SAFE/web/conf/user.conf the file.

admin:$2y$05$oPquL6Z2Y78QcXpHIako.O58Z6lWfa5A86XD.eCbEnbRcguJln9Ce

manager:$apr1$U2GLivF5$x39WKmSpq6BGmLybESgNV1

operator1:$apr1$DetdwaZz$hy5pQzpUlPny3qsXrIS/z1

operator2:$apr1$ICiZv2ru$wRkc3BclBhXzc/4llofoc1

2. Assign the role of the users (optional)

By default, all users have the Admin role. If you want to assign distinct roles to different

users, you must create the SAFE/web/conf/group.conf file and assign user’s role. The

group file can contain the 3 groups Admin, Control, Monitor. Users in these groups will

have the corresponding roles.

Each line of the group file must contain the group name followed by a colon,

followed by the member users name separated by spaces. See the example

above.

For instance, assign the Control role to the new user manager:

SafeKit User's Guide

206 39 A2 38MC 05

Admin : admin

Control : manager

Monitor : operator1 operator2

Each line of the group file must contain the group name followed by a colon,

followed by the member users name separated by spaces. See the example

above.

3. Delete a user, …

Use htpasswd -? for all user management commands (add/delete, ...).

11.4.1.2 Install files

Install the files as follow (where SAFE=C:\safekit in Windows if System Drive=C: ;

and SAFE=/opt/safekit in Linux):

On S1 and S2:

1. copy user.conf to SAFE/web/conf/user.conf

On S1 and S2 if groups are set:

2. copy group.conf to SAFE/web/conf/group.conf

3. On Linux, on S1 and S2, run:

chown safekit:safekit SAFE/web/conf/user.conf SAFE/web/conf/group.conf

chmod 0440 SAFE/web/conf/user.conf SAFE/web/conf/group.conf

These files must be identical on all nodes.

11.4.1.3 Configure and restart the web service

To configure the file-based authentication (where SAFE=C:\safekit in Windows if

System Drive=C: ; and SAFE=/opt/safekit in Linux):

On S1 and S2:

1. edit SAFE/web/conf/httpd.conf file

2. if necessary uncomment usefile

Define usefile

On S1 and S2:

3. run safekit webserver restart

This is the default content of httpd.conf.

11.4.1.4 Test the web console and distributed command

The setup is complete; you can now test that it is operational.

• Test the web console

 Securing the SafeKit web service

39 A2 38MC 05 207

1. Start a browser on the user’s workstation

2. Connect it to the default URL http://host:9010 (where host is the name or Ip

address of one of the SafeKit nodes). If HTTPS is configured, there is an automatic

redirection to https://host:9453

3. In the login page, specify in the user’s name and password

With the SafeKit default configuration, you can log-in with the user admin by

giving the password you assigned during initialization.

4. The loaded page only allows access authorized by the user's role. If the groups

have not been defined, all users have the Admin role.

• Test the distributed command

4. Connect on S1 or S2 as administrator/root

5. Open a system console (PowerShell, shell, …)

6. Change directory to SAFE

7. Run safekit -H "*" level

that should return the level for all nodes

11.4.2 LDAP/AD authentication setup

LDAP/AD authentication setup can be applied in HTTP or HTTPS. It requires:

LDAP/Active Directory account configuration used to

assert the user identity

Optional LDAP/Active Directory group configuration to

restrict the user’s role.

When groups are not defined, all authenticated users

have the Admin role.

On some Linux distributions (such as RedHat 8 and CentOS 8), the web

server start fails when it is configured with LDAP/AD authentication. In this

case, apply the solution described in SK-0092.

Apply the steps described below after verifying that S1 and S2 can connect to the LDAP

controller domain port (default is 389).

11.4.2.1 Manage users and groups

If necessary, ask your LDAP administrator to create users of the SafeKit web console.

If you want to define user’s role, ask your LDAP administrator to create groups for

Admin, Control, Monitor roles and assign users to groups. When groups are not defined,

all users will have the Admin role.

http://servername:9010/
https://servername:9453/
https://support.evidian.com/solutions/downloads/safekit/version_7.5/documentation/safekitknowledgebase.htm#SK-0092

SafeKit User's Guide

208 39 A2 38MC 05

11.4.2.2 Configure and restart the web service

To configure the LDAP/AD authentication (where SAFE=C:\safekit in Windows if

%SYSTEMDRIVE%=C: ; and SAFE=/opt/safekit in Linux):

On S1 and S2:

Initialize the authentication for the distributed command. This may have already

been done if you initialized the default configuration after SafeKit installation.

Otherwise:

1. Run SAFE/private/bin/webservercfg -rcmdpasswd pwd

where pwd is the password for the private user rcmdadmin. You don’t need to

memorize it.

On S1 and S2:

2. edit SAFE/web/conf/httpd.conf file

3. uncomment useldap

Define useldap

4. Locate the following lines and replace bold values according to your LDAP/AD

service configuration:

Define binddn "CN=bindCN,OU=bindOU1,OU=bindOU2,DC=domain,DC=fq,DC=dn"

Define bindpwd "Password0"

Define searchurl "ldap://ldaporad.fq.dn:389/OU=searchou, DC=domain, DC=fq,

DC=dn?sAMAccountName, memberOf?sub?(objectClass=*)"

the binddn and bindpwd variables must contain the credentials of an account

with search rights on the directory.

the searchurl variable defines the RFC2255 search URL to authenticate the

user.

CN: common name

OU: organization unit

DC: domain component (one field for each part of the FQDN).

If the group configuration is not enabled, all authenticated users will have the

Admin role.

On S1 and S2

To enable group management (optional):

5. edit SAFE/web/conf/httpd.conf file

6. uncomment the following lines and replace bold values according to your

LDAP/AD service configuration:

Define admingroup

"CN=Group1CN,OU=Group1OU1,OU=Group1OU2,DC=domain,DC=fq,DC=dn"

Define controlgroup

"CN=Group2CN,OU=Group2OU1,OU=Group2OU2,DC=domain,DC=fq,DC=dn"

Define monitorgroup

"CN=Group3CN,OU=Group3OU1,OU=Group3OU2,DC=domain,DC=fq,DC=dn"

 Securing the SafeKit web service

39 A2 38MC 05 209

Users set into the LDAP/AD groups associated to admingroup, controlgroup and

monitorgroup, will respectively have Admin, Control and Monitor roles.

For more sophisticated authentication, read Apache web service documentation

(see http://httpd.apache.org).

On S1 and S2:

7. run safekit webserver restart

11.4.2.3 Test the web console and distributed command

The setup is complete; you can now test that it is operational.

• Test the web console

1. Start a browser on the user’s workstation

2. Connect it to the default URL http://host:9010 (where host is the name or Ip

address of one of the SafeKit nodes). If HTTPS is configured, there is an automatic

redirection to https://host:9453

3. In the login page, specify in the user’s name and password

4. The loaded page only allows access authorized by the user's role. If the groups

have not been defined, all users have the Admin role.

• Test the distributed command

1. Connect on S1 or S2 as administrator/root

2. Open a system console (PowerShell, shell, …)

3. Change directory to SAFE

4. Run safekit -H "*" level

that should return the level for all nodes

11.4.3 OpenID authentication setup

Since SafeKit 8.2.3, OpenID authentication works only with HTTPS. To setup

HTTPS, refer to section 11.3.

OpenID authentication relies on the mod_auth_openidc Apache module. It must be set

with HTTPS. It requires:

OpenID Identity provider client application registration

and account configuration used to assert the user

identity

Optional OpenID claims configuration to restrict the

user’s role.

When claims are not defined, all authenticated users

have the Admin role.

http://httpd.apache.org/
http://servername:9010/
https://host:9453/

SafeKit User's Guide

210 39 A2 38MC 05

On some Linux distributions you may need to install the mod_auth_openidc

module from the distribution repository.

Apply the steps described below after verifying that S1 and S2 can connect to the

OpenID Identity Provider. You may need to setup a proxy configuration, see relevant

httpd.conf section and mod_auth_openidc documentation for details.

11.4.3.1 Manage app, users and groups

If necessary, ask your OpenID administrator to create users of the SafeKit web console.

Ask your OpenID administrator to register the webconsole App into the OpenID provider

(OP) and retrieve the assigned credentials (ClientID and ClientSecret) values (you will

need those values during the httpd.conf configuration step below).

Set the app’s redirect URI to https://host:9453/openid. If you plan to connect to more

than one server, enter the URL of each connection server.

If you want to define user’s role on the Identity Provider, ask your OpenID administrator

to create groups or roles for Admin, Control, Monitor roles and assign users to the

created groups or roles, then fill in the AdminClaim, ControlClaim and MonitorClaim

variables in httpd.conf with the corresponding claims. When the above is not defined,

all authenticated users will have the Admin role.

You may also define the groups on the SafeKit Web Server by filling in the group.conf

file as in the File-based authentication case (see “Assign the role of the users” in section

11.4.1.1).

11.4.3.2 Configure and restart the web service

To configure the OpenID authentication (where SAFE=C:\safekit in Windows if

%SYSTEMDRIVE%=C: ; and SAFE=/opt/safekit in Linux):

On S1 and S2:

Initialize the authentication for the distributed command. This may have already

been done if you initialized the default configuration after SafeKit installation.

Otherwise:

1. Run SAFE/private/bin/webservercfg -rcmdpasswd pwd

where pwd is the password for the private user rcmdadmin. You don’t need to

memorize it.

On S1 and S2:

2. edit SAFE/web/conf/httpd.conf file

3. uncomment useopenid

Define useopenid

4. Locate the following lines and replace values according to your OpenID service

configuration:

OIDCProviderMetadataURL <Your OpenId provider metadata URL>

OIDCClientID <Your OpenID client ID>

OIDCClientSecret <Your OpenID client secret>

OIDCRemoteUserClaim <The Claim in ID token that identifies the user, if not

set, defaults to sub>

https://host:9453/openid

 Securing the SafeKit web service

39 A2 38MC 05 211

openid connect scope request; this defines which claims are returned by

the IDP.

OIDCScope "openid email"

• the OIDCClientID and OIDCClientSecret variables must contain the

credentials of the registered app in the OpenID Identity Provider.

• the OICDScope variable defines the scopes needed to return the RemoteUser

and optionally roles claims. openid should always be specified.

If neither the AdminClaim, ControlClaim and MonitorClaim configuration nor the

group.conf configuration is enabled, all authenticated users will have the Admin

role.

On S1 and S2

To enable role claim management:

5. edit SAFE/web/conf/httpd.conf file

6. uncomment the following lines and replace the values according to your OpenID

service configuration:

Define AdminClaim roles:SKAdmin

Define ControlClaim roles:SKControl

Define MonitorClaim roles:SKMonitor

Users’ tokens bearing the claims defined by the AdminClaim, ControlClaim and

MonitorClaim, will respectively have Admin, Control and Monitor roles.

For more details, see the mod_auth_openidc documentation (GitHub -

OpenIDC/mod_auth_openidc: OpenID Certified™ OpenID Connect Relying Party

implementation for Apache HTTP Server 2.x).

On S1 and S2:

7. run safekit webserver restart

11.4.3.3 Test the web console and distributed command

The setup is complete; you can now test that it is operational.

• Test the web console

1. Start a browser on the user’s workstation

2. Connect it to the default URL http://host:9010 (where host is the name or Ip

address of one of the SafeKit nodes). Since HTTPS must be configured, there is an

automatic redirection to https://host:9453

3. In the login page, specify in the user’s name and password

4. The loaded page only allows access authorized by the user's role. If the groups

have not been defined, all users have the Admin role.

• Test the distributed command

1. Connect on S1 or S2 as administrator/root

2. Open a system console (PowerShell, shell, …)

https://github.com/OpenIDC/mod_auth_openidc
https://github.com/OpenIDC/mod_auth_openidc
https://github.com/OpenIDC/mod_auth_openidc
http://servername:9010/

SafeKit User's Guide

212 39 A2 38MC 05

3. Change directory to SAFE

4. Run safekit -H "*" level

that should return the level for all nodes

39 A2 38MC 05 213

12. Cluster.xml for the SafeKit cluster

configuration

 Section 12.1 “Cluster.xml file”

 Section 12.2 “SafeKit cluster Configuration”

SafeKit uses the configuration file cluster.xml. This file defines all the servers that

make up the SafeKit cluster as well as the IP address (or name) of these servers on the

networks used to communicate with the cluster nodes. These are global cluster and

module internal communications; these communications are encrypted. This network is

also used for executing the global safekit command (with argument -H).

You must define at least one network that includes all nodes in the cluster. It is

recommended to define several networks to tolerate at least one network failure.

The cluster can be configured:

• Either via the cluster configuration wizard in the SafeKit web console

• Or by directly editing the cluster configuration file and applying the configuration

via command line

Both methods are described in section 12.2.

For full examples of cluster configurations refer to section 15.1.1 and section

15.2.1. It presents the configuration via the web console along with the

corresponding cluster.xml.

12.1 Cluster.xml file

Each network (lan) has a logical name that will be used in the configuration of the

modules to name the monitoring networks:

• into the heartbeat section for a mirror module (for details, see section 13.3)

• into the lan section for a farm module (for details, see section 13.4)

The node name is the one that is used by the SafeKit administration service (safeadmin)

for uniquely identifying a SafeKit node. You must always use the same name for

designing a given server on different networks. This name is also used by the SafeKit

web console when displaying the node’s name.

12.1.1 Cluster.xml example

• In the example below, two networks are defined. One of them can be dedicated to file

replication in a mirror module.

<cluster>

<lans>

 <lan name="default">

 <node name="node1" addr="192.168.1.67"/>

 <node name="node2" addr="192.168.1.68"/>

 </lan>

 <lan name="repli">

 <node name="node1" addr="10.0.0.1"/>

SafeKit User's Guide

214 39 A2 38MC 05

 <node name="node2" addr="10.0.0.2"/>

 </lan>

 </lans>

</cluster>

• In the example below, a unique network is used, but in a Network address translation

(NAT) configuration. For each node two addresses must be defined: the local one

laddr (defined on local interface) and the external one addr (as seen by other

servers).

All nodes must be able to communicate to the others via the NATted addresses.

<cluster>

 <lans>

 <lan name="default">

 <node name="node1" addr="server1.dns.name" laddr="10.0.0.1"/>

 <node name="node2" addr="server2.dns.name" laddr="10.0.0.2"/>

 </lan>

 </lans>

</cluster>

12.1.2 Cluster.xml syntax

<cluster>

 <lans [port="4800"]>

 <lan name="lan_name" [command="on|off"] >

 <node name="node1 name" addr="node1 IP address or name"

 [laddr="local_IP1_address"]/>

 <node name="node2 name" addr="node2 IP address or name"

 [laddr="local_IP2_address"] />

 …

 </lan>

 …

 </lans>

</cluster>

12.1.3 <lans>, <lan>, <node> attributes

<lans Begin the definition of the cluster nodes and

network topology.

[port="xxxx"] Defines the UDP port with which the membership

protocol is exchanged.

Default: 4800

[pulse="xxxx"] Defines the period of the membership protocol

messages emission. Longer pulse makes the

membership protocol use less bandwidth but react

more slowly.

[mlost_count="xx"] Defines the number of periods elapsed without

message before electing a new leader.

[slost_count="xx"] Defines the number of periods elapsed without

messages before declaring a follower node offline.

 Cluster.xml for the SafeKit cluster configuration

39 A2 38MC 05 215

<lan Definition of a LAN (i.e., IPv4 broadcast domain,

IPv6 link) on which the membership protocol will

be transmitted. At least one LAN must be defined.

Define one such tag per used LAN.

name="lan name" Single logical name for the lan.

This name is used into module configuration to

name networks used by the module.

command="on"|"off" Set command="on" to use this network for running

distributed commands on the cluster. In this case,

this <lan> section must include all nodes in the

cluster. You can set only one <lan> section with

command="on".

When this attribute is not set, it is the first <lan>

section that is used for running distributed

commands on the cluster.

Default: off

<node Definition of one node in the SafeKit cluster.

Define as many <node> tags as there are nodes in

the cluster (at least 2).

name="node name" Single logical name to the SafeKit server.

You must always use the same name for designing

a given server on different lans.

addr=

"IP address or name"
IPv4 or IPv6 address, or name of the node as it is

known by other nodes on this LAN (IP address

recommended to be independent from a DNS

server). On NAT configuration, it must be the

external address.

When defining an IPv6 address, use literal format:

the address is enclosed in square brackets (e.g.

[2001::7334])

laddr=

"local IP address"
Local IP address on this LAN. To be used only on

NAT configurations, where local address is

different from external one.

IPv4 address or literal IPv6 address.

In SafeKit < 8.2, the cluster configuration had attributes console and

framework on <lan> tag. These attributes were necessary for the legacy web

console and are obsolete with the new one. If presents, these attributes are

ignored in SafeKit 8.2.

SafeKit User's Guide

216 39 A2 38MC 05

12.2 SafeKit cluster Configuration

12.2.1 Configuration with the SafeKit web console

The SafeKit web console provides a configuration wizard for editing the cluster.xml file

and applying the configuration on all the cluster nodes.

• The cluster configuration requires to log in the web console with a user

having Admin role

• If the cluster is not configured, the web console automatically opens the

Cluster configuration wizard

• When the cluster is configured, the current cluster configuration is loaded

from the connection node specified in the browser URL

Open the cluster configuration wizard:

• Directly via the URL http://host:9010/console/en/configuration/cluster/config

Or

• Navigate in the console

In this example, the console is loaded from 10.0.0.107, which corresponds to node1 in

the existing cluster. This is the connection node.

• Click on “Configuration” in the navigation sidebar

• Click on “Cluster configuration” tab

• Click on “Configure the cluster” button

For details on the cluster configuration wizard, see section 3.2.1.

http://host:9010/safekit-portal/en/configuration/cluster/config

 Cluster.xml for the SafeKit cluster configuration

39 A2 38MC 05 217

12.2.2 Configuration with command line

• (1) Log as administrator/root

• (2) Edit the file SAFEVAR/cluster/cluster.xml

In Windows, SAFEVAR= C:\safekit\var if %SYSTEMDRIVE%=C:

In Linux, SAFEVAR=/var/safekit

• (3) Apply the cluster configuration with a new encryption key by executing:

1. safekit cluster config

Configure locally, from the cluster.xml file, and generate a new encryption

key for communication between the nodes.

2. safekit -H "*" -G

It applies the local configuration, defined into cluster.xml, on all cluster

nodes.

To re-configure the cluster without cryptographic key, execute :

1. safekit cluster delkey

2. safekit -H "*" -G

To regenerate encryption keys and propagate them on cluster nodes:

1. safekit cluster genkey

2. safekit -H "*" -G

For the full description of commands, refer to section 9.2.

12.2.3 Configuration changes

When changing the cluster configuration, the new configuration must be applied on all

cluster nodes. When the configuration is applied only on a subset of the nodes present

into the cluster configuration, only this subset will be able to communicate with each

other. This is also the case when the cryptographic key is not identical on all nodes. This

can have the effect of disrupting the operation of the modules installed on servers.

For a correct behavior, you must re-apply the configuration on all the nodes that belong

to the cluster as described above.

You can check the configuration by running the command safekit cluster

confinfo on each node (see section 9.2). When the configuration is

operational, this command must return on all nodes, the same list of nodes

and the same value for the configuration signature.

Changing the cluster configuration could have important impact on module configurations

since the lan names set into the cluster configuration are used into the module’s

configuration. Any change in the cluster configuration, will trigger modules updates:

each module will reload its configuration to adapt the changes. Such changes could lead

to module stop in case of incompatibility (for example if a lan used by a module is

removed from the cluster configuration). So, great care must be taken when modifying

cluster configuration when modules are running.

SafeKit User's Guide

218 39 A2 38MC 05

39 A2 38MC 05 219

13. Userconfig.xml for a module configuration

 Section 13.1 “Macro definition - <macro>”

 Section 13.2 “Farm or mirror module - <service>”

 Section 13.3 “Heartbeats - <heart>, <heartbeat >”

 Section 13.4 “Farm topology - <farm>, <lan>”

 Section 13.5 “Virtual IP address - <vip>”

 Section 13.6 “File replication - <rfs>, <replicated>”

 Section 13.7 “Enable module scripts - <user>, <var>”

 Section 13.8 “Virtual hostname - <vhost>, <virtualhostname>”

 Section 13.9 “Process or service monitoring - <errd>, <proc>”

 Section 13.10 “Checkers - <check>”

 Section 13.11 “TCP checker - <tcp>”

 Section 13.12 “Ping checker - <ping>”

 Section 13.13 “Interface checker - <intf>”

 Section 13.14 “IP checker - <ip>”

 Section 13.15 “Custom checker - <custom>”

 Section 13.16 “Module checker - <module>”

 Section 13.17 “Splitbrain checker - <splitbrain>”

 Section 13.18 “Failover machine - <failover>”

Each time you modify userconfig.xml, the configuration must be applied to all the

nodes of the cluster onto which the module is installed, to become the active

configuration.

To apply the new configuration modified on node1, on all cluster nodes, follow the

procedure below (replace node1, node2 by the nodes name and AM by the module

name).

• the web console, connected to node1, by navigating to “Configuration/Modules

configuration/

Configure the module/”

• or the web console, connected to node1, by directly entering the URI

/console/en/configuration/modules/AM/config/

• or the command safekit config -H "node1,node2" -E AM executed on node1

Example of userconfig.xml:

<safe>

 <!-- Insert below <macro> <service> tags -->

</safe>

http://host:9010/safekit-portal/en/configuration/modules/AM/config/

SafeKit User's Guide

220 39 A2 38MC 05

With the web console, the module must be stopped before applying the

configuration.

With command line, it is possible to apply a new configuration while the

module is running, but only in ALONE (Ready) or WAIT (NotReady)

states. This feature is called dynamic configuration. Only a restricted subset

of parameters could be changed. If the new configuration cannot be

deployed, an error message is displayed. The attributes that can be

dynamically modified are reported hereafter.

13.1 Macro definition - <macro>

Use a macro to associate a name with a value. In the userconfig.xml, the name,

enclosed by the % character, is replaced by the value of the corresponding macro.

The syntax %identifier% can also be used in userconfig.xml to represent

the value of an environment variable named identifier. In case of conflict,

it is the macro value that is expanded.

13.1.1 <macro> example

In the example below, %PATH% is replaced by e:\path.

<macro name="PATH" value="e:\path"/>

<service>

 …

 <rfs>

 <replicated dir="%PATH%" />

 </rfs>

</service

For an example of macro usage, refer to section 15.3. It presents the

configuration via the web console along with the corresponding

userconfig.xml.

13.1.2 <macro> syntax

<macro

 name="identifier"

 value="value"

/>

13.1.3 <macro> attributes

<macro

name="identifier" A character string that identifies the macro.

value="value" The value that will replace each occurrence of

%identifier% in the rest of userconfig.xml.

/>

 Userconfig.xml for a module configuration

39 A2 38MC 05 221

13.2 Farm or mirror module - <service>

13.2.1 <service> example

• Example for a mirror module

<service mode="mirror" defaultprim="alone" maxloop="3" loop_interval="24"

failover="on">

 <!-- Insert below <hearbeat> <rfs> <vip> <user> <vhost> <errd> <check>

<failover> tags -->

</service>

For a full example of a mirror module, refer to section 15.1. It presents the

configuration via the web console along with the corresponding

userconfig.xml.

• Example for a farm module

<service mode="farm" maxloop="3" loop_interval="24">

 <!-- Insert below <farm> <vip> <user> <vhost> <errd> <check> <failover> tags --

>

</service>

For a full example of a farm module, refer to section 15.2. It presents the

configuration via the web console along with the corresponding

userconfig.xml.

13.2.2 <service> syntax

<service mode="mirror"|"farm"|"light"

 [boot="off"|"on"|"auto"|"ignore"]

 [boot_delay="0"]

 [failover="on"|"off"]

 [defaultprim="alone"|"server_name"|"lastprim"]

 [maxloop="3"] [loop_interval="24"]

 [automatic_reboot="off"|"on"]>

</service>

Only boot, maxloop, loop_interval and automatic_reboot attributes can

be changed with a dynamic configuration.

13.2.3 <service> attributes

<service Top level section of userconfig.xml

mode=

"mirror"|

"farm"|

"light"

• mode="mirror" for mirror module (section 1.2)

The synchronization protocol between the 2 servers is defined

in section 13.3.

For a full example of a mirror module, refer to

section 15.1.

• mode="farm" for farm module (see section 1.3)

The synchronization protocol between the 2 servers is defined

in section 13.4.

SafeKit User's Guide

222 39 A2 38MC 05

For a full example of a farm module, refer to

section 15.2.

• mode="light" for light (see section 1.2.9)

It is a module set to the minimum needed for one server with

error detection and local restart only (no failover).

[boot=

"on"|

"off"|

"auto"|

"ignore"]

• boot="on"

the module is automatically started at boot time.

• boot="off"

the module is not started at boot time.

• boot="auto"

the module is automatically started at boot time if it was

started before the reboot.

• boot="ignore"

Before SafeKit 7.5, the configuration to start the module at

boot was done with the command safekit boot -m AM on |

off (which had to be executed on each node). If you prefer to

continue using this command, remove the boot attribute or

set it to ignore (the default). The module will not be started

at boot time unless the safekit boot -m AM on command is

executed.

The state of the boot configuration is visible in the

usersetting.boot resource. To check the state of resources, see

section 7.3.

Default value: ignore

[boot_delay="0"

]
The delay, in seconds, before starting the module at boot.

Default value: 0 (no delay)

[failover=

"on"|

"off"]

For mirror module only.

• failover="on"

An automatic failover on the secondary server is triggered if

the primary fails or stops.

• failover="off"

When the primary server fails or stops, the secondary server

waits (no automatic failover is triggered). Only the prim

command can start the secondary server as primary. See

description in section 5.7.

Default value: on

[defaultprim=

"alone"|
For mirror module only.

 Userconfig.xml for a module configuration

39 A2 38MC 05 223

"server_name"|

"lastprim"]
defaultprim specifies which server among two servers is the

default primary server for an application module.

This option is useful when a module is ALONE on a server and the

module is started on the other server.

• defaultprim="alone"

The ALONE module becomes PRIM while the module on the

other server becomes SECOND. Value recommended avoiding

swap of application after reintegration.

• defaultprim="server_name"

When the module is running on two servers, the primary

server among the two servers is the one set in defaultprim.

This value can be useful for active/active (see section 1.4.2)

or N-1 active (see section 1.4.3) architectures.

• defaultprim="lastprim"

The restarted module becomes PRIM if it was PRIM before its

last stop.

Default value: alone

[maxloop="3"] Number of consecutive error detections before stopping.

This attribute defines the maximum number of actions (restart,

stopstart, wait) that can be executed following an error

detection issued by <errd> or a <checker>, before locally

stopping the module.

The counter is reset at the expiration of the loop_interval

timeout and upon safekit start, restart, swap, stopstart…

administrative commands execution.

Note that a safekit command sent by a detector passes the -i

identity parameter and increments the counter, whereas

administrator issued commands reset it.

This attribute’s value can be changed with a

dynamic configuration.

The maxloop is represented by the resource

heart.stopstartloop. Its current value corresponds to the date

on which the counter was initialized (in the form of a Unix Epoch

timestamp); and its assignment date corresponds either to its

initialization or to a stopstart, restart. View the resource

history to see each increment of the maxloop counter.

Default value: 3

[loop_interval

="24"]
Time interval during which maxloop applies.

If set to 0, the maxloop counter becomes inactive.

Default value: 24 hours.

SafeKit User's Guide

224 39 A2 38MC 05

This attribute’s value can be changed with a

dynamic configuration.

[automatic_rebo

ot

="off"|

"on"]

If set to on, stopstart triggers a reboot instead of stopping and

restarting the module.

Default value: off

This attribute’s value can be changed with a

dynamic configuration.

13.3 Heartbeats - <heart>, <heartbeat >

Heartbeats must be used only for mirror architecture. For farm architecture, see section

13.4.

The basic mechanism for synchronizing two servers and detecting server failures is the

heartbeat, which is a monitoring data flow on a network shared by a pair of servers.

Normally, there are as many heartbeats as there are networks shared by the two

servers. In normal operation, the two servers exchange their states (PRIM, SECOND, the

resource states) through the heartbeat mechanism and synchronizes their application

start and stop procedures.

If all heartbeats are lost, it is interpreted as if the other server was down, and the local

server switches to the ALONE state. Although not mandatory, it is better to have two

heartbeat channels on two different networks for synchronizing the two servers to avoid

the split-brain case.

The network used by the heartbeat is defined by the logical name of a network set into

the SafeKit cluster configuration (for details, see section 12).

13.3.1 <heart> example

For a full example of in a mirror module, refer to section 15.1. It presents

the configuration via the web console along with the corresponding

userconfig.xml.

• Basic example to configure heartbeat on the cluster network named default

<heart>

 <heartbeat name="default" />

</heart>

• Example with 2 heartbeats, one dedicated replication network configured with

ident="flow" on the cluster network named private

<heart>

 <heartbeat name="default" />

 <heartbeat name="private" ident="flow"/>

</heart>

13.3.2 <heart> syntax

<heart

 [port="xxxx"] [pulse="700"] [timeout="30000"]

 [permanent_arp="on"]

>

 <heartbeat

 Userconfig.xml for a module configuration

39 A2 38MC 05 225

 [port="xxxx"] [pulse="700"] [timeout="30000"] name="network" [ident="name"]

 >

</hearbeat>

 …

</heart>

The <heart> tag and full subtree can be changed with a dynamic

configuration.

13.3.3 <heart>, <heartbeat > attributes

<heart

[port="xx"] UDP port on which all the heartbeats are exchanged.

Default: depends on the id of the application module. Returned

by the safekit module getports command.

[pulse="700"] The delay, in milliseconds, between two heartbeat packets.

Default value: 700 ms

[timeout="30000"] Timeout value for heartbeat loss detection.

Default value: 30 000 ms

<heartbeat Definition of one heartbeat. There are as many <heartbeat>

tags as there are networks used to probe servers’ mutual

connectivity. At least one heartbeat must be defined.

[port="xx"] Redefines the UDP port for the heartbeat.

Default value is the same as the one defined in <heart> tag.

[pulse="700"] Redefines the delay in milliseconds between two heartbeat

packets. Default value is the same as the one defined in <heart>

tag.

[timeout=

"30000"]
Redefines the timeout value for heartbeat loss detection. Default

value is the same as the one defined in <heart> tag.

name="network" Network named used by the heartbeat. network must be the

name of a network set into the SafeKit cluster configuration (for

details, see section 12).

This attribute is mandatory in new config syntax (since SafeKit

7.2).

[ident="name"] Set how the heartbeat will be labelled in the web console and in

internal resources. The associated resource name

heartbeat.name.

If no ident attribute is present the value of the name attribute

will be used.

SafeKit User's Guide

226 39 A2 38MC 05

ident="flow" is a reserved name associated

with a heartbeat declared for a replication flow.

If you set a heartbeat with ident="flow",

automatically the replication flow will be set on

the same network.

If you set ident="flow" without <rfs>

configuration, the module start blocks in WAIT

state.

[permanent_arp=

"on"|"off"]
Regularly, heart sets a permanent ARP entry for the ip addresses

associated with the heartbeats.

On some Linux systems, it may cause heart to freeze. Set this

parameter to off in this case and manually set permanent arp

for the remote server on boot. On Linux, this can be done by

inserting the following line into a script that is executed at boot:

arp -s hostname hw_addr

Default value: on

[<server addr=

"IP1_address />]
Legacy definition of the server address in the heartbeat.

The <server> tag is a legacy syntax used in previous SafeKit

version (before SafeKit 7.2). It’s supported for compatibility

reason but must not be used for new modules.

In the same userconfig.xml, you must not use

the syntax for SafeKit 7.1 and the one for SafeKit

7.2.

13.4 Farm topology - <farm>, <lan>

The basic mechanism to synchronize a farm of servers is a group communication protocol

which automatically detects the available members of the farm. Normally, the

membership protocol is configured on all networks connecting the N servers.

The network used by the protocol is defined by the logical name of a network set into the

SafeKit cluster configuration (for details, see section 12).

13.4.1 <farm> example

Basic example to use the cluster network named default.

<farm>

 <lan name="default" />

</farm>

For full examples in a farm module, see section 15.2. It presents the

configuration via the web console along with the corresponding

userconfig.xml.

13.4.2 <farm> syntax

<farm [port="xx"]>

 <lan name="network"></lan>

 …

 Userconfig.xml for a module configuration

39 A2 38MC 05 227

</farm>

The <farm> tag and subtree cannot be changed with a dynamic

configuration.

13.4.3 <farm>, <lan> attributes

<farm Begin the definition of a farm topology.

[port="xx"] UDP port with which the membership protocol is exchanged.

Default: depends on the id of the application module. Returned

by safekit module getports command.

[pulse="xx"] The period of the membership protocol messages emission.

Longer pulse makes the membership protocol use less

bandwidth but reacts more slowly.

[mlost_count="xx"] Number of periods elapsed without message before electing a

new leader.

[slost_count="xx"] Number of periods elapsed without messages before declaring

a follower node offline.

<lan Definition of a LAN (i.e., IPv4 broadcast domain, IPv6 link) on

which the membership protocol will be transmitted. At least

one LAN must be defined. Define one such tag per used LAN.

name="network" Define the name of network used. network must be the name

of a network set into the SafeKit cluster configuration (see

section 12).

This attribute is mandatory in new config syntax (since SafeKit

7.2).

[<node

name="identity"

addr=

"IP1_address" />]

Legacy address and name of the node on this lan. The node

tag is a legacy syntax used in previous SafeKit version (before

SafeKit 7.2). It’s supported for compatibility reason but must

not be used for new modules.

In the same userconfig.xml, you must not use

the syntax for SafeKit 7.1 and the one for SafeKit

7.2.

13.5 Virtual IP address - <vip>

If you install and run several application modules on the same server, the

virtual IP addresses must be different for each application module.

13.5.1 <vip> example in a mirror module

The following example configures the virtual IP address on the primary node of an on-

premises cluster.

SafeKit User's Guide

228 39 A2 38MC 05

<vip>

 <interface_list>

 <interface check="off" arpreroute="on">

 <real_interface>

 <virtual_addr addr="192.168.1.222" where="one_side_alias"

check="on"/>

 </real_interface>

 </interface>

 </interface_list>

 </vip>

See also the full example in section 15.1. It presents the configuration via

the web console along with the corresponding userconfig.xml.

13.5.2 <vip> example in a farm module

The following example configures load balancing to port 80 and virtual IP address

between nodes in an on-premises cluster. The virtual IP address is configured on all

nodes.

<vip>

 <interface_list>

 <interface check="on" arpreroute="on" arpinterval="60" arpelapse="10">

 <virtual_interface type="vmac_directed">

 <virtual_addr addr="192.168.1.222" where="alias" check="on"/>

 </virtual_interface>

 </interface>

 </interface_list>

 <loadbalancing_list>

 <group name="FarmProto">

 <rule port="80" proto="tcp" filter="on_port"/>

 </group>

 </loadbalancing_list>

 </vip>

See also the full example in section 15.2. It presents the configuration via

the web console along with the corresponding userconfig.xml.

13.5.3 Alternative to <vip> for servers in different networks

The configuration of a virtual IP address with a <vip> section in userconfig.xml

requires servers in the same IP network (network rerouting and load balancing made at

level 2).

If servers are in different IP networks, the <vip> section cannot be configured. In this

case, an alternative is to configure the virtual IP in a load balancer. The load balancer

routes packets to the physical IP addresses of servers by testing an URL status named

health check and managed by SafeKit.

So, SafeKit provides a health check for SafeKit modules. For this, configure the health

check in the load balancer with:

• HTTP protocol

• port 9010, the SafeKit web service port

• URL /var/modules/AM/ready.txt, where AM is the module name

 Userconfig.xml for a module configuration

39 A2 38MC 05 229

In a mirror module, the health check:

• returns OK, that means that the instance is healthy, when the module state is

PRIM(Ready) or ALONE(Ready)

• returns NOT FOUND, that means that the instance is unhealthy, in all other states

In a farm module, the health check:

• returns OK, that means that the instance is healthy, when the farm module state

is UP (Ready)

• returns NOT FOUND, that means that the instance is out of service, in all other

states

Another alternative is that you implement a special DNS configuration and a DNS

rerouting command inserted in the SafeKit restart scripts.

13.5.4 <vip> syntax

13.5.4.1 Virtual IP loadbalancing in farm architecture

<vip [tcpreset="off"|"on"]>

 <interface_list>

 <interface

 [check="off"|"on"]

 [arpreroute="off"|"on"]

 [arpinterval="60"]

 [arpelapse="1200"]

 >

 <virtual_interface

 [type=""vmac_directed"|"vmac_invisible"]

 [addr="xx:xx:xx:xx:xx"]

 >

 <virtual_addr

 addr="virtual_IP_name or virtual_IP_address"

 [where="alias"]

 [check="off"|"on"]

 [connections="off"|"on"]

 />

 …

 </virtual_interface>

 </interface>

 </interface_list>

 <loadbalancing_list>

 <group name="group_name"

 <cluster>

 <host name="node_name" power="value" />

 …

 </cluster>

 <rule

 [virtual_addr="*"|"virtual_IP_name"|"virtual_IP_address"]

 [port="*"|"value"]

 proto="udp"|"tcp"

 filter="on_addr"|"on_port"|"on_ipid"

 />

 …

 </group>

 …

SafeKit User's Guide

230 39 A2 38MC 05

 </loadbalancing_list>

</vip>

The <vip> tag and subtree cannot be changed with a dynamic

configuration.

13.5.4.2 Virtual IP failover in mirror architecture

For on-premises SafeKit cluster:

<vip [tcpreset="off"|"on"]>

 <interface_list>

 <interface

 [check="off"|"on"]

 [arpreroute="off"|"on"]

 [arpinterval="60"]

 [arpelapse="1200"]

 >

 <real_interface>

 <virtual_addr

 addr="virtual_IP_name or virtual_IP_address"

 where="one_side_alias"

 [check="off"|"on"]

 [connections="off"|"on"]

 />

 …

 </real_interface>

 </interface>

 …

 </interface_list>

</vip>

13.5.5 <vip><interface_list>, <interface>, <virtual_interface>,
<real_interface>, <virtual_addr> attributes

<vip

[tcpreset="off"|"on"] Before unconfiguring the virtual IP address, all

connections with the virtual IP address as IP source

are reset. The reset is disabled when set to off.

Default value: on

<interface_list>

<interface Definition of an interface with virtual IP addresses.

Define as many <interface> sections as there are

network interfaces to configure.

[check="off"|"on"] Set an interface checker on the interface to stop the

service and put it in the WAIT state when the interface

is down. The name of the interface checker is

intf.<network_IP_mask> (intf.192.168.0.0).

 Userconfig.xml for a module configuration

39 A2 38MC 05 231

Default value: on

For more information, see section 13.13.

[arpreroute="off"|"on"] Automatically broadcast gratuitous ARP on virtual IP

addresses defined in <real_interface> section.

Default value: off.

[arpinterval="60"] Time in seconds between two gratuitous ARP.

Default value: 60 s

[arpelapse="1200"] Time during which gratuitous ARP are sent.

Default value: 1200 s

[name="interface name"] Linux only

You can specify the name of the network interface on

which the virtual IP addresses will be set.

Ex.: name="bond0"

Default: no value, SafeKit detects the network

interface with virtual IP addresses set on it.

13.5.5.1 <virtual_interface>, <virtual_addr> attributes in farm architecture

Use with farm modules for virtual IP load balancing :

<virtual_interface Definition of virtual IP addresses configured on an

Ethernet interface.

type=

"vmac_directed"|

"vmac_invisible"

• type="vmac_directed"

Advertise the MAC address of one of the servers as

the associated mac address, as with normal traffic.

No promiscuous mode needed. For details, see

section 13.5.7.3.

• type="vmac_invisible"

The virtual MAC address never visible in Ethernet

headers to allow broadcasting of switch. Needs

promiscuous mode. For details, see section

13.5.7.2.

When running SafeKit into a virtual machine, you

must turn on the promiscuous mode on the

virtual network adapter. See SK-0099 for the

procedure to follow for Hyper-V and VMware

ESXi.

Note: can be used for a mirror module with a need of

transparent rerouting.

https://support.evidian.com/solutions/downloads/safekit/version_8.2/documentation/safekitknowledgebase.htm#SK-0099

SafeKit User's Guide

232 39 A2 38MC 05

[addr="xx:xx:xx:xx:xx"] Unicast virtual MAC address value.

If not set, default is the concatenation of "5A:FE" (Safe)

and the first configured virtual IP address in

hexadecimal. Ignored in vmac_directed mode.

<virtual_addr Definition of one Virtual IP address. Set as many

<virtual_addr> sections as there are virtual IP

addresses on the interface.

addr="virtual_IP_name"|

"virtual_IP_address"

Name or address of the virtual IP (prefer an IP address

to be independent from the name server).

IPv4 or IPv6 address.

where="alias" Configuration for farm module: the virtual IP address is

defined on all servers as an alias IP address.

Load balancing rules apply only for this type of virtual

IP addresses.

Note : when VMAC is used with a mirror module, set

here where="one_side_alias"

[check="off"|"on"] Defines an ip checker on the virtual IP address to

stopstart the module when the virtual IP is deleted or in

conflict. The name of the ip checker is ip.<addr

value> (ip.192.168.1.99).

Default value: on

For more information, see section 13.14

[connections="off"|"on"] Enables counting of the number of active connections

on the virtual address. This count is stored in the

resource named connections.<virtual addr value>

(for example: connections.192.168.1.99) which is

assigned every 10 seconds. This value is provided as a

guideline only.

Default value: off

netmask="defaultnetmask" Linux and IPV4 only. By default, the netmask of the

network interface on which the virtual IP address is set.

Set the netmask if there are several netmasks on the

interface.

</virtual_interface>

13.5.5.2 <real_interface>, <virtual_addr> attributes in mirror architecture

Use with mirror modules for virtual IP failover:

 Userconfig.xml for a module configuration

39 A2 38MC 05 233

<real_interface> Definition of virtual IP addresses associated with the

real MAC address of the interface.

<virtual_addr Definition of one virtual IP address. Set as many

virtual_addr sections as there are virtual IP

addresses on the interface.

addr=

"virtual_IP_name"|

"virtual_IP_address"

Name or address of the virtual IP (prefer an IP

address to be independent from the name server).

IPv4 or IPv6 address.

where="one_side_alias" The Virtual IP address will be aliased on the server

on which the module becomes PRIM or ALONE.

[check="off"|"on"] Defines an ip checker on the virtual IP address to

stopstart the module when the virtual IP is deleted

or in conflict. The name of the ip checker is

ip.<addr value> (ip.192.168.1.99).

Default value: on

For more information, see section 13.14.

[connections="off"|"on"] Enables counting of the number of active

connections on the virtual address. This count is

stored in the resource named

connections.<virtual addr value> (for example:

connections.192.168.1.99) which is assigned

every 10 seconds. This value is provided as a

guideline only.

Default value: off

netmask="defaultnetmask" Linux and IPV4 only. By default, the netmask of the

network interface on which the virtual IP address is

set.

Set the netmask if there are several netmasks on

the interface.

</real_interface>

13.5.6 <loadbalancing_list>, <group>, <cluster>, <host> attributes

Use with farm module.

For many load-balancing examples, see section 15.2. It presents the

configuration via the web console along with the corresponding

userconfig.xml.

<loadbalancing_list>

SafeKit User's Guide

234 39 A2 38MC 05

<group Definition of a load balancing group. Define as many

sections as there are groups.

See multi group example in section 15.2.2.4.

name="group_name" Name of the load balancing group.

<cluster Optional definition of the server set on which the load

current group balancing will be applied. If no <cluster>

section is defined, the rules apply to all servers of the

farm.

<host Definition of one node in the cluster. Define as many

hosts sections as there are nodes configured for the

module.

name="node_name" Define the name of the host. node_name must be the

name of a node name set into the SafeKit cluster

configuration (see section 12).

power="value" Relative weight to apply to the current node in this load

balancing group’s cluster. Can be equal to 0, which

means no traffic will be dispatched to this node. See

section 13.5.7.4 for more information.

</cluster>

<rule Definition of a load balancing rule for the group. Define

as many sections as there are load balancing rules for

this group.

[virtual_addr=

"*" |

"virtual_IP_address"|

"virtual_IP_name"]

Virtual IP name or address scope of the rule.

By default, all virtual IP addresses: *

[port="*"|"value"] TCP or UDP port to which the load balancing rule

applies.

By default, all ports: *

proto="udp" | "tcp" |

"arp"
• proto="udp"

Load balancing rule applies to the UDP protocol.

• proto="tcp"

Load balancing rule applies to the TCP protocol.

• proto="arp"

Load balancing rule applies to the IP<->MAC

resolution protocol (arp or neighbor discovery)

 Userconfig.xml for a module configuration

39 A2 38MC 05 235

filter="on_addr" |

"on_port" |

"on_ipid"

• filter="on_addr"

Load balancing criteria is the source IP address

(client, far end of the connection)

• filter="on_port"

Load balancing criteria is the source port (client, far

end of the connection).

• filter="on_ipid"

Load balancing is made on the client ip_id at input.

Useful for UDP. No sense for TCP and for IPv6

addresses.

13.5.7 <vip> Load balancing description

13.5.7.1 <vip> prerequisites

See network prerequisites described in section 2.3.2.

13.5.7.2 What is the vmac_invisible type?

When type="vmac_invisible", a virtual MAC address is mapped on the virtual IP

address with a unicast MAC Ethernet address on several network nodes. When a network

device tries to resolve the virtual IP address into its corresponding MAC address, the

SafeKit servers respond with the virtual MAC address. However, SafeKit servers use its

physical MAC address to communicate. To “see” the packets sent to the virtual MAC

address the interface is set to promiscuous mode. So, the virtual MAC address is invisible

to layer 2 network devices. Ethernet switches therefore forward virtual MAC address

directed packets to all the ports in the same vlan as the source, reaching all the servers

of the farm. A kernel module running on each farm server is responsible for filtering out

the packets that should not be processed by a given farm node, according to the load

balancing rules defined.

With the virtual MAC address technology, the failover time is null. There is no network

rerouting after a failure: all network equipment keeps their mapping virtual IP address,

virtual MAC address.

When running SafeKit into a virtual machine, you may have to turned on the

promiscuous mode on the virtual network adapter. See SK-0099 for the

procedure to follow for Hyper-V and VMware ESXi.

To test a virtual MAC address in your network, see section 4.3.7.

13.5.7.3 What is the vmac_directed type?

When type="vmac_directed", there is in fact no virtual MAC address. Farm servers

reply to virtual IP resolution requests with their own physical MAC address. A kernel

module running on each farm server is responsible for filtering and dispatching the

packets to their designated target farm node according to the load balancing rules

defined. In vmac_directed mode there is a short failover time for clients that have

resolved the virtual IP address as the MAC address of the failed server. This is

https://support.evidian.com/solutions/downloads/safekit/version_8.2/documentation/safekitknowledgebase.htm#SK-0099

SafeKit User's Guide

236 39 A2 38MC 05

comparable to what happens in “real interface” mode. Clients that have another farm

server’s MAC address in their cache are not affected.

To help minimize failover time in ipv4, set the arpreroute attribute to "on" on the

corresponding <interface> tag, and tune the arpelapse and arpinterval attributes to

the desired values. Ipv6 does not need arpreroute, it has a built-in mechanism that

takes care of the failover.

13.5.7.4 How does load balancing work?

On all the servers of the farm, the load balancing algorithm filters received packets

according to the identity of the sender. The criteria to check is defined by configuration in

userconfig.xml: client IP address, client port… (i.e.: level 3 load balancing), or

requestor address (arp rules, i.e., level 2 load balancing). The criteria are hashed into a

value representing the server on which the packet is to be accepted.

When a server fails, the membership protocol reconfigures the filters to re-balance the

traffic of the failed server on the available servers.

Each server can have a power (=1, 2…) and then takes more or less traffic. The power is

implemented by the number of bits set to 1 in the hash table (a bitmap of 256 bits).

A bitmap example is given in section 4.3.5.

13.6 File replication - <rfs>, <replicated>

For mirror modules only.

In Linux, you must set the same value for uid/gid on the two nodes for replicating file

permissions. When replicating a filesystem mount point, you must apply a special

procedure described in section 13.6.4.2.

In Windows, it is strongly recommended to enable the USN journal on the drive that

contains the replicated directory as described in section 13.6.4.3.

If you install and run several application modules on the same server, the

replicated directories must be different for each application module.

13.6.1 <rfs> example

• Example in Windows:

<rfs async="second">

 <replicated dir="c:\safedir" mode="read_only"/>

</rfs>

• Example in Linux:

<rfs async="second">

 <replicated dir="/safedir" mode="read_only"/>

</rfs>

See also a full example at section 15.1.

For the configuration of a dedicated replication network, refer to section

15.1.2.2. It presents the configuration via the web console along with the

corresponding userconfig.xml.

 Userconfig.xml for a module configuration

39 A2 38MC 05 237

13.6.2 <rfs> syntax

<rfs

 [acl="on"|"off"]

 [async="second"|"none"]

 [iotimeout="nb seconds"]

 [roflags="0x10"|"0x10000"]

 [locktimeout="100"]

 [sendtimeout="30"]

 [nbrei="3"]

 [ruzone_blocksize="8388608"]

 [namespacepolicy="0"|"1"|"3"|"4"]

 [reitimeout="150"]

 [reicommit="0"]

 [reidetail="on"|"off"]

 [allocthreshold="0"]

 [nbremconn ="1"]

 [checktime="220000"]

 [checkintv="120"]

 [nfsbox_options="cross"|"nocross"]

 [scripts="off"]

 [reiallowedbw="20000"]

 [syncdelta="nb minutes"]

 [syncat="synchronization scheduling"]

>

 <replicated dir="absolute path of a directory"

 [mode="read_only"]

>

 <tocheck path="relative path of a file or subdir" />

 <notreplicated path="relative path of a file or subdir" />

 <notreplicated regexpath="regular expression on relative path of a file or

subdir" />

 …

 </replicated>

</rfs>

Only async, nbrei, reitimeout and reidetail attributes of <rfs> tag

can be changed with a dynamic configuration. The <flow> tag, describing

the replication flow, can also be changed dynamically.

13.6.3 <rfs>, <replicated> attributes

<rfs

[mountoversuffix=

"suffix"]
Linux only

During the module configuration, the replicated directory

"/a/dir" is renamed "/a/dirsuffix". The directory /a/dir is

created and it is:

• a mount point to /a/dirsuffix when the module is started

• a link to "/a/dirsuffix" when the module is stopped

By default, suffix value is “_For_SafeKit_Replication”.

SafeKit User's Guide

238 39 A2 38MC 05

If there is a hard failure, then the symbolic link

will not be restored. In this case, you must

restore the symbolic link manually.

Restriction

You cannot explicitly specify a root file system as

a replicated directory (because of the directory

rename that is not allowed across a file system).

The work around is to manipulate the fstab file

as described in a KB on

https://support.evidian.com.

When the module is started, NEVER ACCESS files

in "/a/dirsuffix", otherwise the modifications

will not be replicated, and the system will

become inconsistent. ALWAYS ACCESS replicated

files through "/a/dir".

[acl=

"on" | "off"]
Setting acl to on activate the replication of ACL on files and

directories.

Default value: off

Restriction for Windows

ACL replication will not work if the SYSTEM

account does not have the "Full control" access

right on all the replicated forest.

File ACLs are replicated literally (as SID

values), therefore ACL granted to locally

defined users and groups will be meaningless

on the remote system.

File encryption and file compression attributes

are not supported.

[async=

"second" |

"none"]

Setting async mode to second is a way to improve file

replication performances: modification operations are cached on

the secondary server and the acknowledgements are sent more

quickly to the primary server.

• async="none"

It ensures more robustness: modification operations are put

on disk of the secondary before sending acknowledgement

to the primary.

• async="second"

In case of double failure at the same time of both PRIM and

SECOND servers, if the PRIM server cannot restart, then the

SECOND server does not have up-to-date data on its disk.

https://support.evidian.com/

 Userconfig.xml for a module configuration

39 A2 38MC 05 239

There is data loss if the SECOND server is forced to start as

primary with the prim command.

Default value: second

This attribute’s value can be changed with a

dynamic configuration.

[packetsize] Linux only

Maximum size in bytes for NFS replication packets. It must be

lower than the maximum size allowed by the NFS server of both

servers. When it is set into the configuration, it is used as mount

options for rsize and wsize.

By default, the size is the one of the NFS server.

[reipacketsize="8

388608"]
Maximum size in bytes of reintegration packets.

In Linux, this value must be less or equal to packetsize.

Default value in Linux: value of packetsize if it is set into the

configuration and is lower than 8388608; else 8388608

Default value in Windows: 8388608 bytes

[ruzone_blocksize

="8388608"]
Size of a zone for the modification bitmap of a file.

It must be a multiple of reipacketsize attribute.

Default value: value of reipacketsize if it is set into the

configuration; else 8388608

[iotimeout] Windows only

IO time out in seconds in the Windows file system filter. If an IO

cannot be replicated and if the timeout expires in the filter, then

the PRIM server becomes ALONE.

If not set, the default value is dynamically calculated.

[roflags="0x10"|

"0x10000"]

Windows only

• roflags="0x10"

To ensure the consistency of the data replicated on the 2

servers, the modification of the replicated directories/files

must only take place on the PRIM server. If changes are

made on the SECOND server, they are notified in the module

log with the identification of the process responsible so that

the administrator can correct this anomaly.

• roflags="0x10000"

With this flag, since SafeKit 7.4.0.31, the module is also be

stopped on the SECOND server.

Default value: 0x10

SafeKit User's Guide

240 39 A2 38MC 05

[locktimeout=

"100"]
Timeout in seconds for replication requests. If a request cannot

be served within this timeout, the PRIM server becomes ALONE.

Default value: 100 seconds

[sendtimeout=

"100"]
Since SafeKit > 7.4.0.5

Timeout in seconds for sending TCP packets to the remote node.

If a packet cannot be sent within this timeout, the PRIM server

becomes ALONE. Increase this value in case of low networks.

Default value: 30 seconds

In SafeKit 7.4.0.5, the default value was 12O

seconds.

[nbrei="3"] Number of reintegration threads running in parallel for

resynchronizing files.

Default value: 3

This attribute’s value can be changed with a

dynamic configuration.

[namespacepolicy=

"0"|"1"|"3"|"4"]
• namespacepolicy="0"

Deactivate the zone reintegration on Windows or Linux

• namespacepolicy="1"

In Windows, zone reintegration after reboot when the

module has been properly stopped is not active

• namespacepolicy="3"

In Windows, it allows zone reintegration after reboot when

possible. It activates the USN change journal on the volume

containing the replicated directories (see fsutil usn

command for creating USN change journal on a volume).

Even with this configuration, full reintegration is used

instead of zone reintegration when:

o the USN change journal associated with the volume has

been deleted/recreated for administration reasons

o discontinuity in the USN journal is detected

• namespacepolicy="4"

When zone synchronization is not possible (on the first

reintegration or when zones are not available), the files that

need to be synchronized are fully copied. If this

reintegration does not complete, the next one will copy

again these files. To avoid this, set namespacepolicy="4".

This option also enables USN journal checking in Windows.

Default value: 4 since SafeKit > 7.4.0.5 (not supported in

previous releases)

 Userconfig.xml for a module configuration

39 A2 38MC 05 241

[reitimeout=

"150"]
Timeout in seconds for reintegration requests. The timeout can

be increased to avoid reintegration failure on heavy load of the

primary server.

Default value: 150 seconds

This attribute’s value can be changed with a

dynamic configuration.

[reicommit="0"] Linux only

Set reicommit="nb blocks" to commit every (nb blocks)*

reipacketsize when reintegrating one file (in addition to the

commit at the end of the copy). This can help to succeed

reintegration of big files but slows down reintegration time.

Default value: 0 that means no intermediate commit

[reidetail=

"on"|"off"]
Detailed logging for reintegration.

Default value: off

This attribute’s value can be changed with a

dynamic configuration.

[allocthreshold=

"0"]
Windows only

Size in Gb to apply the allocation policy before reintegration.

When allocthreshold> 0, enable fast allocation of disk space

for files to be synchronized on the secondary node. This feature

avoids a timeout when the primary writes at the end of the file,

when the file is large (> 200 Gb) and not yet completely copied.

Since SafeKit 7.4.0.64, the allocation policy has changed and is

applied for:

• Newly created files (files that did not exist on the secondary

when the reintegration starts)

• Files with size on the primary >= allocthreshold (size
in Go)

• Full synchronization on the first reintegration ; on start with

full synchronization (safekit second fullsync) ; when

synchronization by zones is disabled (namespacepolicy="0")

Default value: 0 (that disables the feature)

[nbremconn="1"] Number of TCP connections between the primary and the

secondary nodes.

This value may be increased to improve the replication and

synchronization throughput when the network has high latency

(in cloud for instance).

Default value: 1

SafeKit User's Guide

242 39 A2 38MC 05

[checktime=

"220000"]
Linux only

Timeout in milliseconds for the null request that checks the local

replicated file system. Run the safekit stopstart command

when the timeout is reached.

Default value: 220 000 milliseconds

[checkintv=

"120"]
Linux only

Interval in seconds between two null requests.

Default value: 120 seconds

nfsbox_options="c

ross"|"nocross"
Windows only

It specifies the policy to apply when a reparse point of type

MOUNT_POINT is present in the replicated directory tree. This

policy applies to all replicated directories.

MOUNT_POINT reparse points in NTFS can represent two types of

objects: an NTFS mount point (for example the D:\ directory)

or an NTFS "directory junction" (a form of "symbolic link" to

another part of the file system namespace).

• nfsbox_options="cross"

The MOUNT_POINT reparse point object itself is not

replicated/reintegrated. It is evaluated, and the

reintegration/replication process the target content as it

would do for the content of a standard directory. This is

useful for instance when a replicated directory is a mount

point (e.g., replicating a "drive letter" root). This is the

default configuration value.

• nfsbox_options="nocross"

The MOUNT_POINT reparse point object itself is

replicated/reintegrated, but not evaluated. Reintegration

does not descend into the target of the reparse point. This

is useful for instance when a replicated directory tree

contains NTFS "junctions" that point to another part of the

replicated tree (e.g., when replicating a PostgreSQL

database, as PostgreSQL is known to need such objects).

Default value: cross

[scripts=

"on" | "off"]
scripts="on" activates _rfs_* script callbacks used to

implement specific data replication management

Default value: off

[reiallowedbw="20

000"]
When defined, this attribute specifies the maximum bandwidth

that the reintegration phase may use (for instance 20000 KB/s),

in kilo bytes per second (KB/s).

Due to implementation trade-off, a +/-10% fluctuation of the

effectively used bandwidth is to be expected.

 Userconfig.xml for a module configuration

39 A2 38MC 05 243

The replication bandwidth is not affected by this

parameter.

By default, the attribute is not defined, and the bandwidth used

by the reintegration is not limited

[syncdelta="nb

minutes"]

• syncdelta <=1

The attribute is ignored and the default failover and start

policy is applied: only an up-to-date server can start as

primary or run a failover.

• syncdelta >1

It changes the default failover and start policy. The not up-

to-date server can become primary but only if the elapsed

time, in minutes, since the last synchronization is lower

than the syncdelta value (see section 13.6.4.4).

Default value: 0 minutes

[syncat="synchron

ization

scheduling"]

Default: real-time replication and automatic synchronization (no

scheduling)

Use syncat for scheduling the synchronization of replicated

directories on the secondary node (see section 13.6.4.10). The

module must be started for enabling this feature. Once

synchronized, the module blocks in the WAIT (NotReady) state

until the next synchronization.

The scheduling is based on native job scheduler:

• On Unix, the job is defined in the safekit user’s crontab

• On Windows, the job is defined as a system task

You must configure syncat with the syntax of the native job

scheduler. For instance, for synchronizing daily, after midnight:

• in Windows

syncat="/SC DAILY /ST 00:01:00"

• in Unix

syncat="01 0 * * *"

See crontab documentation in Unix and

schtasks.exe documentation in Windows, for

the full syntax of scheduled date and time.

Since SafeKit configuration is just a front end to

the job scheduler, when scheduling is not

working, please check first for syntax errors.

[<flow name

="network">

 [<server

addr="IP_1" />

Legacy configuration preserved for backwards compatibility.

SafeKit User's Guide

244 39 A2 38MC 05

<server

addr="IP_2" />]

 </flow>]

When this section is not defined, the replication flow uses the

same network as the heartbeat with ident="flow" if there is

one, if not it uses the first heartbeat (see section 13.3).

If you define this section, be coherent with heartbeat

ident="flow", if there is one, because default failover rules

apply to this heartbeat.

This <flow> tag subtree can be changed with a

dynamic configuration for setting a new

replication flow for instance.

The name attribute of <flow> define the network used for

replication flow. It must present in global cluster configuration

(see section 12).

The <server> tag is a legacy syntax used in previous SafeKit

version (before 7.2). It’s supported for compatibility reason but

must not be used for new modules.

In the same userconfig.xml, you must not use

the syntax for SafeKit 7.1 and the one for SafeKit

7.2.

<replicated Begin the definition of replicated directories.

Set as many lines as there are replicated directories.

dir="abs_path" Absolute path of a directory to replicate.

[mode=

"read_only"]
Read-only access rights on the secondary machine for replicated

directories to avoid corruption

<notreplicated

path="relative"

/>

Relative path of a file or sub-directory in a replicated directory.

The file (or sub-directory) is not replicated. Set as many lines as

there are non-replicated files or sub-directories.

<notreplicated

regexpath="regula

r expression" />

Regular expression on the name of entries under the replicated

directory :

• Replicate all except entries matching the regular

expression. For example, to avoid replicating entries with the

extension .tmp or .bak in the /safedir directory or its sub-

directories:

<replicated dir="/safedir">

 <notreplicated regexpath=".*\.tmp$" />

 <notreplicated regexpath=".*\.bak$" />

</replicated>

Note that /safedir/conf/config.tmp.swap is replicated.

• Replicate only those entries in the directory that match the

regular expression after the !

For example, to replicate only entries with the extension

.mdf or .ldf in the /safedir directory or its sub-directories:

<replicated dir="/safedir">

 <notreplicated regexpath="!.*\.mdf$" />

 Userconfig.xml for a module configuration

39 A2 38MC 05 245

 <notreplicated regexpath="!.*\.ldf$" />

</replicated>

Rename between not replicated and replicated

files is not supported.

The regex engine is POSIX Extended regex (see POSIX

documentation):

• in Windows, case insensitive mode

• in Linux, case sensitive mode

As regular expressions are defined inside the

XML file userconfig.xml, special characters

interpreted by XML like '<' or '>' cannot be used

in regular expressions.

<tocheck

path="relative"

/>

Relative path of a file or sub-directory in a replicated directory.

Checks the presence of the file or sub-directory before starting

the replication mechanism. Avoids errors such as starting

replication on an empty file system. Set as many lines as there

are files or sub-directories to check.

13.6.4 <rfs> description

13.6.4.1 <rfs> prerequisites

See file replication prerequisites described in section 2.2.4.

13.6.4.2 <rfs> Linux

On Linux, interception of data is based on a local NFS mount. And the replication flow

between servers is based on NFS v3 / TCP protocol.

The NFS mount of replicated directories from remote Unix clients is not supported. The

NFS mount of other directories can be made with standard commands.

Procedure for replicating a mount point

When replicating a mount point in Linux, the module configuration fails with the error:

Error: Device or resource busy

In the following, we take the example of PostgreSQL module that set as replicated

directories /var/lib/pgsql/var and /var/lib/pgsql/data. The userconfig.xml of the

module contains:

<rfs … >

 <replicated dir="/var/lib/pgsql/var" mode="read_only" />

 <replicated dir="/var/lib/pgsql/data" mode="read_only" />

</rfs>

These directories are mount points as shown by the result of the command df -H. It

returns for instance:

/dev/mapper/vg01-lv_pgs_var … /var/lib/pgsql/var
/dev/mapper/vg02-lv_pgs_data … /var/lib/pgsql/data

SafeKit User's Guide

246 39 A2 38MC 05

You must apply the following procedure for configuring the module to replicate these

directories.

1. umount the file systems by running the commands:

umount /var/lib/pgsql/var

umount /var/lib/pgsql/data

2. configure the module by running the command:

/opt/safekit/safekit config -m postgresql

The configuration should succeed (no errors)

3. check the symbolic links created by running the command ls -l /var/lib. It

returns:

lrwxrwxrwx 1 root var -> var_For_SafeKit_Replication
lrwxrwxrwx 1 root data -> data_For_SafeKit_Replication

4. edit /etc/fstab and change the two lines:

/dev/mapper/vg01-lv_pgs_var /var/lib/pgsql/var ext4…

/dev/mapper/vg02-lv_pgs_data /var/lib/pgsql/data ext4…

With

/dev/mapper/vg01-lv_pgs_var /var/lib/pgsql/var_For_SafeKit_Replication ext4…

/dev/mapper/vg02-lv_pgs_data /var/lib/pgsql/data_For_SafeKit_Replication ext4..

5. mount the file systems by running the commands:

mount /var/lib/pgsql/var_For_SafeKit_Replication

mount /var/lib/pgsql/data_For_SafeKit_Replication

• Apply this procedure on both nodes if replicated directories are mount

point on both nodes. Once applied, you can use the module as usual: i.e.,

safekit start stop etc …

• It is the same procedure for all mounts points that must be replicated

To protect the start of the module on a non-mounted and empty directory,

you can insert in userconfig.xml the checking of a file inside the replicated

directory. Example for /var/lib/pgsql/var (do the same for

/var/lib/pgsql/data with a file inside this directory which is always

present):

<replicated dir="/var/lib/pgsql/var" mode="read_only">

 <tocheck path="postgresql.conf" />

</replicated>.

If you want to unconfigure the module (or uninstall whole SafeKit package), you must

reverse this procedure by:

1. umount the file systems with:

umount /var/lib/pgsql/var_For_SafeKit_Replication

umount /var/lib/pgsql/data_For_SafeKit_Replication

2. de-configure the module with

 Userconfig.xml for a module configuration

39 A2 38MC 05 247

/opt/safekit/safekit deconfig -m postgresql

3. edit /etc/fstab to undo previous editing

4. mount the file systems with:

mount /var/lib/pgsql/var

mount /var/lib/pgsql/data

13.6.4.3 <rfs> Windows

On Windows, interception of data is based on a file system filter. And the replication flow

between servers is based on NFS v3 / TCP protocol.

The rfs filter may not work correctly with some anti-viruses.

On Windows, you can mount remotely a replicated directory from a workstation. If you

want to mount with the virtual name instead of the digital virtual IP address, you must

set the two following registry keys on the server side:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa]

"DisableLoopbackCheck"=dword:00000001

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\lanmanserver\paramete

rs] "DisableStrictNameChecking"=dword:00000001

In Windows, to enable zone reintegration after server reboot, when the module has been

successfully stopped, the <rfs> component uses the NTFS USN log to verify that the

information recorded on the zones is still valid after the reboot. When the control

succeeds, the zone reintegration can be applied to the file; otherwise, the file must be

fully copied.

By default, only the system drive has a USN log active. If the replicated directories are

located on a different drive than the system drive, you must create the log (with fsutil

usn command).

See SK-0066 for an example.

13.6.4.4 <rfs> replication and failover

With its file-replication function, mirror architecture is particularly suitable for providing

high availability for back-end applications with critical data to protect against failure. The

reason is that the secondary server data is strongly synchronized with the primary server

data. A synchronized server is considered as up-to-date and only an up-to-date server

can start as primary or run a failover.

If the application availability is more critical than the application data, this default policy

can be relaxed by allowing a server to become primary if the time elapsed since the last

synchronization is below a configurable delay. This is configured by setting the

syncdelta attribute of the <rfs> tag:

• syncdelta <= 1

The attribute is ignored and the default failover and start policy is applied. The

default value is 0.

• syncdelta > 1

https://support.evidian.com/solutions/downloads/safekit/version_7.5/documentation/safekitknowledgebase.htm#SK-0066

SafeKit User's Guide

248 39 A2 38MC 05

When the last up-to-date server is not responding, the not up-to-date server can

become primary but only if the elapsed time since the last synchronization is lower

than the syncdelta value (in minutes).

This feature is implemented with:

• rfs.synced resource

When syncdelta is > 1, the rfs.synced resource is managed. This resource is UP

if the replicated data are consistent and if the elapsed time, in minute since the

last synchronization is lower than the syncdelta value.

• syncedcheck checker

When syncdelta is > 1, this checker is running. It sets the value for the

rfs.synced resource.

• rfs_forceuptodate failover rule

When syncdelta is > 1, the following failover rule is valid:

rfs_forceuptodate: if (heartbeat.* == down && cluster() == down &&

rfs.synced == up && rfs.uptodate == down) then rfs.uptodate=up;

This rule leads to the primary start of the server when the up-to-date server is not

responding and if the server is isolated and can be considered as synchronized

according to syncdelta value.

13.6.4.5 <rfs> replication verification

You can check for the module, named AM, that files are identical on the primary and the

secondary, by running the following command on the SECOND server: safekit

rfsverify -m AM. Run safekit rfsverify -m AM > log to redirect the command

output into the file named log.

This output of the command is a log like that of the reintegration in which the files to be

copied (therefore different) are indicated. When on the primary, there is activity on the

replicated directories, an anomaly may be detected while there is no difference between

the files in the following cases:

• on Windows because modifications are made on disk before being replicated

• with async="second" (default) because reads can bypass the asynchronous

writes.

To check if there is really an inconsistency, you must re-run the command on the

secondary server making sure that there is no more activity on the primary.

On Windows, some files are systematically seen as erroneous by the verifier while there

is no difference. This occurs when files are modified with SetvalidData: files are

extended without resetting the new extension and the reads return random data from

the disk.

It is strongly recommended to run this command only when there are no

accesses to the replicated directories on the primary.

13.6.4.6 <rfs> file changes since the last synchronization

Before starting a secondary server, it may be useful to evaluate the number of files and

data that have been changed on the primary server since the secondary server has

 Userconfig.xml for a module configuration

39 A2 38MC 05 249

stopped. This feature is provided by running the following command on the ALONE server:

safekit rfsdiff -m AM. Run safekit rfsdiff -m AM > log to redirect the command

output into the file named log.

This command runs on-line checks of regular files content of the module AM. It scans the

entire replicated tree and displays the number of files that have been modified as well as

the size that need to be copied. It also displays estimation for the synchronization

duration. This is only estimation since only regular files are scanned and some other

modifications may occur until the synchronization is run by the secondary server.

This command must be used with caution on a production server since it leads to an

overhead on the server (for reading trees and files with locking). On Windows, rename of

files can fail during the evaluation.

It is strongly recommended to run this command only when there are no

accesses to the replicated directories.

13.6.4.7 <rfs> replication and reintegration bandwidth

The replication component monitors, on the PRIM server, the bandwidth used by

replication and reintegration write requests.

Two resources (rfs.rep_bandwidth and rfs.rei_bandwidth) reflect the average

bandwidth used by replication and reintegration respectively during the last 3 seconds,

expressed in kilo bytes per second (KB/s).

If the replication load is IO intensive, the reintegration phase may saturate the network

link and significantly slow down the application. In such a case, the <rfs> reiallowedbw

attribute may be used to limit the bandwidth taken by the reintegration phase (see

section 13.6.3). Please note that limiting the reintegration bandwidth will make the

reintegration phase longer.

There are also 2 resources that reflect the network bandwidth (in in Kbytes/sec) used

between nfsbox processes, that run on each node to implement replication and

reintegration:

• rfs.netout_bandwidth is the network output bandwidth

• rfs.netin_bandwidth is the network input bandwidth

You can observe the value of rfs.netout_bandwidth on the primary or

rfs.netin_bandwidth on the secondary to know the modification rate at the time of

observation (write, create, delete, …). The history of the resource values gives an

overview of its evolution over time.

The value of the bandwidth depends on the application, system, and network activity. Its

measurement is available for information purposes only.

13.6.4.8 <rfs> synchronization by date

SafeKit 7.2 offers a new command safekit secondforce -d date -m AM that forces the

module AM to start as secondary after copying only files modified after the specified date.

This command must be used with cautions since the synchronization will not

copy files modified before the specified date. It is the administrator’s

responsibility to ensure that these files are consistent and up-to-date.

The date is in the format of YYYY-MM-DD[Z] or "YYYY-MM-DD hh:mm:ss[Z]" or YYYY-

MM-DDThh:mm:ss[Z], where:

SafeKit User's Guide

250 39 A2 38MC 05

• YYYY-MM-DD indicates the year, month, and day

• hh:mm:ss indicates the hours, minutes, and seconds

• Z indicates that the time is in UTC time zone; when not set the time is in local

time zone

• For instance:

• safekit secondforce -d 2016-03-01 -m AM for copying only files modified after

the 1st of March 2016

• safekit secondforce -d "2016-03-01 12:00:00" -m AM for copying only files

modified after the 1st of March 2016 at 12h, local time zone

• safekit secondforce -d 2016-03-01T12:00:00Z -m AM for copying only files

modified after the 1st of March 2016 at 12h, UTC time zone

This command may be useful in the following case:

• the module is stopped on the primary server and a backup of the replicated data

is done (on a removable drive for instance)

• the module is stopped on the secondary server and the replicated data is restored

from the backup. It may be the first start-up or the repair of the secondary

server.

• the module is started on the primary server that becomes ALONE

• the module is started on the secondary with the command safekit secondforce

-d date -m AM where the date is the backup date

In this case, only the files modified since the backup date will be copied (full copy),

instead of the full copy of all files.

In Windows, the file modification date on the secondary server is changed

when the file is copied by the synchronization process. Therefore, safekit

secondforce -d date -m AM, where date is prior to the last reintegration on

this server, has no interest.

13.6.4.9 <rfs> external synchronization

On the first synchronization, all replicated files are fully copied from the primary node to

the secondary node. During the following synchronizations, necessary when the

secondary node comes back, only zones modified, during the secondary downtime, of

files that have been modified on the primary node during the secondary node downtime.

When the replicated directories are voluminous, the first synchronization can take a lot of

time especially if the network is slow. For this reason, since SafeKit> 7.3.0.11, SafeKit

provides a new feature to synchronize a large amount of data that must be used in

conjunction with a backup tool.

On the primary node, simply back up the replicated directories and pass the

synchronization policy to the external mode. The backup is transported (using an

external drive for instance) and restored to the secondary node, which is also configured

to perform external synchronization. When the module is started on the secondary node,

it copies only the file areas that were modified on the primary node since the backup

The external synchronization relies on a new SafeKit command safekit rfssync that

must be applied on both nodes to set the synchronization policy to external. This

command requires as arguments:

 Userconfig.xml for a module configuration

39 A2 38MC 05 251

• the role of the node (prim | second)

• a unique identifier (uid)

External synchronization procedure

The external synchronization procedure, described below, is the procedure to be followed

in the case of a cold backup of the replicated directories. In this case, the application

must be stopped, and any modification of the replicated directories is prohibited until the

module and the application are started, in ALONE(Ready). The order of operations

must be strictly adhered to.

The external synchronization procedure, described below, is the procedure to be followed

in the case of a hot backup of replicated directories. In this case, the module is

ALONE(Ready); the application is started and changes to the contents of the replicated

directories are allowed. The order of operations must be strictly adhered to.

SafeKit User's Guide

252 39 A2 38MC 05

safekit rfssync command

safekit rfssync

external prim uid [-

m AM]

Set the synchronization policy to external. It is identified

by the value of uid (at max 24 char).

The node is the primary one, the source for synchronizing

data.

safekit rfssync

external second uid

[-m AM]

Set the synchronization policy to external. It is identified

by the value of uid (at max 24 char).

The node is the secondary one, the destination for

synchronizing data

safekit rfssync -d

prim uid [-m AM]

safekit rfssync -d

second uid [-m AM]

Disable the replicated directories change detection between

the cold backup/restore and the start of the module.

Use this option with caution since the external

synchronization may not properly detect all

changes to be copied.

safekit rfssync full

[-m AM]

Set the synchronization policy to full. This will copy all

files in their entirety on the next synchronization.

safekit rfssync Display the current synchronization policy

Internals

The synchronization policy is represented by module’s resources:

usersetting.rfssyncmode, usersetting.rfssyncrole, usersetting.rfssyncuid and

rfs.rfssync:

• usersetting.rfssyncmode="default" (usersetting.rfssyncrole="default",

usersetting.rfssyncuid="default")

 Userconfig.xml for a module configuration

39 A2 38MC 05 253

These values are associated with the standard synchronization policy, which is applied

by default. It consists of copying only the modified areas of the files. When this policy

cannot be applied, the modified files are copied in their entirety.

• usersetting.rfssyncmode="full" (usersetting.rfssyncrole="default",
usersetting.rfssyncuid="default")

These values are associated with the full synchronization policy. It is applied:

• the first time the module is started after its first configuration

• on safekit commands (safekit second fullsync ; safekit rfssync full

; safekit primforce ; safekit config ; safekit deconfig)

• on change of pairing for the module

The full synchronization policy will copy all files in their entirety on the next

synchronization.

• usersetting.rfssyncmode="external", usersetting.rfssyncrole="prim |

second" and usersetting.rfssyncuid="uid"

These values are associated with the external synchronization policy assigned with

the commands safekit rfssync external prim uid and safekit rfssync

external second uid. The next synchronization will apply the external

synchronization policy.

• rfs.rfssync="up | down"

This resource is only up when the synchronization policy, defined by the previous

resources, can be applied.

When the synchronization policy is not the default policy, the synchronization policy

automatically returns to the default mode after successful synchronization. To check the

state of resources, see section 7.3.

In some cases, external synchronization cannot be applied, and the secondary node

stops with an error specified in the module log. In this situation, you must either:

• complete the external synchronization procedure if this has not been done in its

entirety on the 2 nodes

• fully reapply the external synchronization procedure on the 2 nodes

• revert to the full synchronization policy (safekit rfssync full command)

• apply the synchronization by date, using the date of the backup (see section

13.6.4.8). Unlike external synchronization, synchronization by date will copy the

files, modified on the primary node, in their entirety (instead of just modified

parts).

13.6.4.10 <rfs> scheduled synchronization

By default, SafeKit provides real-time file replication and automatic synchronization. On

heavy loaded server or high latency network, you may want to let the secondary node

weakly synchronized. For this, you can use the syncat attribute for scheduling replicated

directories synchronization on the secondary node. The module must be started for

enabling this feature. Once synchronized, the module blocks in the WAIT (NotReady)

state until the next synchronization schedule. It is implemented with:

• the resource rfs.syncat that is set to up on the scheduled dates and set to down

after the data synchronization

SafeKit User's Guide

254 39 A2 38MC 05

• the failover rule rfs_syncat_wait that blocks the module into the state WAIT

(NotReady) until the rfs.syncat resource is up

If you want to manually force the synchronization, you can run the command: safekit

set -r rfs.syncat -v up -m AM while the module is in the WAIT (NotReady) state.

With syncat, you just have to configure the scheduled time for the synchronization with

the syntax of the native job scheduler: crontab in Linux and schtasks.exe in Windows

(see section 13.6.3).

13.7 Enable module scripts - <user>, <var>

This section describes only the configuration options available for <user> tag. Refer to

section 14 for a full description of module scripts.

When this tag is not set, the module scripts are not executed.

13.7.1 <user> example

<user logging="userlog" >

 <var name="name1" value="value1" />

</user>

For as example of <var> usage, refer to section 15.3. See also the full

example of a mirror module at section 15.1 or a farm module at section

15.2. It presents the configuration via the web console along with the

corresponding userconfig.xml.

13.7.2 <user> syntax

<user

 [nicestoptimeout="300"]

 [forcestoptimeout="300"]

 [logging="userlog"|"none"]

 [userlogsize="2048"]

 >

 <var name="name1" value="value1" />

 …

</user>

The <user> tag and full subtree can be changed with a dynamic

configuration.

13.7.3 <user>, <var> attributes

<user

[nicestoptimeout=

"300"]
Timeout delay in seconds to execute the stop_xx script.

Default value: 300 seconds

[forcestoptimeout=

"300"]
Timeout delay in seconds to execute the stop_xx -force

script.

Default value: 300 seconds

 Userconfig.xml for a module configuration

39 A2 38MC 05 255

[logging="userlog"|"

none"]
stdout and stderr messages of the application started in

scripts.

• logging="userlog"

Messages are redirected into the log
SAFEVAR/modules/AM/userlog_<year>_<month>_<day>

T<time>_<script name>.ulog where AM is the module

name (SAFEVAR=C:\safekit\var on Windows and

SAFEVAR=/var/safekit on LINUX).

• logging="none", messages are not logged.

Default value: userlog

[userlogsize="2048"] Limit in KB of the size of the userlog

On module start, the file is truncated to 0 if the size has

reached this limit.

Default value: 2048 KB

[<var

 name="name1"

 value="value1"/>]

Optional environment variable and its value are exported

before the execution of module scripts. Define as many var

sections as there are environment variables to export.

13.8 Virtual hostname - <vhost>, <virtualhostname>

13.8.1 <vhost> example

<vhost>

 <virtualhostname name="vhostname" envfile="vhostenv"/>

</vhost>

See also the example in section 15.12. It presents the configuration via the

web console along with the corresponding userconfig.xml.

13.8.2 <vhost> syntax

<vhost>

 <virtualhostname

 name="virtual_hostname"

 envfile="path_of_a_file"

 [when="prim"|"second"|"both"]

 />

</vhost>

The <vhost> tag and subtree cannot be changed with a dynamic

configuration.

13.8.3 <vhost>, <virtualhostname> attributes

<vhost>

<virtualhostname

SafeKit User's Guide

256 39 A2 38MC 05

name="virtual_hostname" Definition of the virtual hostname.

envfile="path_of_envfile" Path of the environment file automatically generated by

SafeKit during configuration command

If the path of the file is relative, the file will be

generated in the runtime environment of the

application module i.e.: SAFEUSERBIN

This generated environment file is used in module

scripts to set the virtual hostname before starting and

stopping the application. See the module template

vhost.safe delivered with Linux and Windows

package.

[when="prim"|"second"|

"both"]
Define when the virtual hostname must be returned to

the application instead of the physical one.

Default value: prim means when the server is primary

(PRIM or ALONE).

/>

</vhost>

13.8.4 <vhost> description

Some applications need to see the same hostname on all SafeKit servers (typically,

because it is stored in a replicated file). With the virtual hostname, these applications see

the virtual name whereas other applications see the physical name.

• On Linux

Implementation is based on the LD_PRELOAD environment variable: gethostname

and uname functions are overloaded.

• On Windows

Implementation is based on the CLUSTER_NETWORK_NAME_ environment variable:

the query API (GetComputerName, GetComputerNameEx, gethostname) functions

take this variable into account. To use vhost for a service, use the command

vhostservice <service> [<file>] before/after the service start/stop.

13.9 Process or service monitoring - <errd>, <proc>

<errd> section requires <user/> section.

13.9.1 <errd> example

See also a full example in section 15.4. It presents the configuration via the

web console along with the corresponding userconfig.xml.

 Userconfig.xml for a module configuration

39 A2 38MC 05 257

13.9.1.1 Process monitoring

• Linux and Windows

myproc is the command name of the process to monitor:

<errd>

 <proc name="myproc" atleast="1" action="restart" class="prim"/>

</errd>

• Linux only (since SafeKit > 7.2.0.29)

oracle_.* is a regular expression on the command name of the process to monitor:

<errd>

 <proc name="oracle" nameregex="oracle_.*" atleast="1" action="restart"

class="prim"/>

</errd>

13.9.1.2 Service monitoring

myservice is the name of a service to monitor. In Windows, it is the name of a

Windows service (since safekit > 7.3). In Linux, it is the name of a systemd service

(since safekit > 7.4.0.19).

<errd>

<proc name="myservice" service="yes" atleast="1" action="restart" class="prim" />

</errd>

13.9.2 <errd> syntax

<errd

 [polltimer="10"]

>

 <proc name="command name and/or resource name for the monitored process (or

service in Windows)"

 [service="no|yes"]

 [nameregex=="regular expression on the command name"]

 [argregex="regular expression on process arguments, including command

name"]

 atleast="1"

 action="stopstart"|"restart"|"stop"|"executable_name"

 class="prim"|"both|"pre"|"second"|"sec"|"othername"]

 [start_after="nb polling cycles"]

 [atmax="-1"]

 />

 …

</errd>

The <errd> tag and full subtree can be changed with a dynamic

configuration.

13.9.3 <errd>, <proc> attributes

<errd

polltimer="30" Time delay, in seconds, between two polls of the list of

processes.

SafeKit User's Guide

258 39 A2 38MC 05

Default value: 30 seconds

<proc Definition of a process to monitor. Set as many proc

sections as there are processes.

A resource is associated with each <proc>, it is named

proc.<value of the attribute name> (e. g

proc.process_name). The resource is up when the

monitoring condition is true; else down if false.

name="command_name"

command_name is the command name of the process to

monitor. It is also the name of the resource associated with

the monitored process.

At max 15 characters in Linux (the command name can be

truncated); 63 in Windows.

For example:

• name="vi" on Linux

• name="notepad.exe" on Windows

In Windows only, the name is automatically

converted to lower case.

See section 13.9.4 for help on retrieving the process

command name.

Or

name="service_name"

service="yes"

service_name is the name of the service to monitor. It is

also the name of the resource associated with the monitored

service.

At max 63 characters.

For example:

• name="W32Time" service="yes" for monitoring the

Windows Time service

• name="ntpd" service="yes" for monitoring the

Linux Time service (systemd ntpd.service)

The service attribute is optional.

Default value: no

Or

name="command_name"

nameregex="regular

expression on the

command name"

Linux only

nameregex is a regular expression applied on the command

name for selecting the process to monitor.

name is name of the resource associated with the monitored

process.

As regular expressions are defined inside the

XML file userconfig.xml, special characters

interpreted by XML like '<' or '>' cannot be used

in regular expressions.

 Userconfig.xml for a module configuration

39 A2 38MC 05 259

For example:

• nameregex="oracle _. *" name="oracle"

for monitoring oracle process that match the regular

expression. The associated resource is proc.oracle

The nameregex attribute is optional.

class=

"prim"|

"both"|

"pre"|

"second"|

"sec"|

"othername"

The process belongs to a class.

The monitoring of a class is enabled/disabled with the

command safekit errd enable|disable "classname" -m

AM.

• class="prim"|"both"|"pre"|"second"|"sec"

Activation/deactivation of these classes are

automatically done in the <user/> component with

start_prim/stop_prim, start_both/stop_both,

start_second/stop_second, start_sec/stop_sec. For

scripts details, see section 14.

• class="othername"

For nonstandard classes, you must explicitly

enable/disable process monitoring after/before the

start/stop of the process.

[argregex="regular

expression on

process arguments"]

Regular expression matching the list of arguments of the

process to monitor, including the executable name. Optional

parameter.

The regex engine is POSIX Extended regex (see POSIX

documentation):

• in Windows, case insensitive mode

• in Linux, case sensitive mode

As regular expressions are defined inside the

XML file userconfig.xml, special characters

interpreted by XML like '<' or '>' cannot be used

in regular expressions.

See section 13.9.4 for help on retrieving the list of

arguments of a process.

• Linux examples with vi editor on myfile

<proc name="vi" argregex=".*myfile.*" …

<proc name="vi" argregex="/myrep/myfile.*" …

<proc name="vi" argregex="/myrep/myfile" …

• Windows examples with notepad editor on myfile

<proc name="notepad.exe" argregex=".*myfile.*" …

<proc name="notepad.exe"

argregex="c:\\myrep\\myfile.*" …

SafeKit User's Guide

260 39 A2 38MC 05

<proc name="notepad.exe"

argregex="c:\\myrep\\myfile" …

atleast="1" Minimum number of processes that must be running.

If this minimum is not reached, then SafeKit triggers an

action

• name="oracle" argregex=".*db1.*" atleast="1"

means that an action will be triggered if less than one

oracle instance is running on db1.

• atleast="-1" this criterion is meaningless

Default value: 1

action=

"restart"|

"stopstart"|

"stop"|

"noaction"|

"executable_name"

Action (or handler) to execute on the module

• action="restart" triggers a local restart

• action="stopstart" triggers a stopstart and may

lead to a failover

• action="stop" triggers a stop and may lead to a

failover

To avoid a loop on reproducible fault, a maxloop counter

is incremented at each restart/stopstart command.

For the maxloop definition, see section 13.2.

• action="noaction" means logging a message

• action="executable_name"

To define a special handler, either set an absolute path

or a path relative to the "bin" directory of the module:

SAFE/modules/AM/bin/. We recommend a relative path

and a handler defined inside the module. When defining

a special handler, a new class name must be associated

with the monitored process.

For a special handler on Linux, on success, end with

exit 0. For a special handler on Windows, on success,

end with %SAFEBIN%\exitcode 0. With a different

value, SafeKit performs a stopstart command.

When running special handlers, the maxloop counter is

not incremented. To increment it, use: safekit incloop
-m AM -i <handler name>

This command increments the counter and returns 1

when the limit has been reached.

Default value: stopstart

[start_after="nb

polling cycles"]
Without the start_after attribute the monitoring of

processes is immediately effective.

Otherwise, it is delayed for (n-1)*polltimer (in seconds)

where:

 Userconfig.xml for a module configuration

39 A2 38MC 05 261

• n is the value given in start_after parameter

• polltimer is the value set on the errd flag (30

seconds by default)

For example, if start_after="3", the server is delayed for

60 seconds ((3-1)*30).

The start_after parameter is useful if the process takes a

certain time to start.

Default value: 0

Advanced parameters

atmax="-1" Maximum number of processes that can run.

If this maximum is reached, then SafeKit triggers an action.

• atmax="-1" means that this criterion is meaningless.

• atmax="0", an action is triggered each time the process

is started.

Default value: -1 this criterion is meaningless

</errd>

13.9.4 <errd> commands

If the command is used inside a module script, then the SAFEMODULE

environment variable is set and the -m AM parameter is not necessary.

safekit -r

errdpoll_running

This command prints into the file

SAFEVAR/errdpoll_reserrd (SAFEVAR=/var/safekit on

Linux and SAFEVAR=c:\safekit\var on Windows if c: is the

installation drive), one line for each running process with

following fields:

<pid> <command name> <command full name and

arguments list> (parent=<parent pid>)

In Windows, the command name is displayed in lower case.

Useful to find the process name and its arguments for an

<errd> configuration

safekit errd

disable "classname"

-m AM

Suspends the monitoring of the processes included in the

class classname (for the application module AM).

Must be explicitly done in stop_... scripts before stopping the

application, for processes in class different from prim, both,

second, sec.

safekit errd enable

"classname" -m AM

Resumes the monitoring of the processes defined with the

class classname (for the application module AM).

SafeKit User's Guide

262 39 A2 38MC 05

Must be explicitly done in start_... scripts after starting the

application, for processes in class different from prim, both,

second, sec.

safekit errd off

-m AM

Suspends the monitoring of all processes except SafeKit

processes (for the application module AM).

Useful when stopping manually the application without

triggering error detection.

With SafeKit < 8.2, use
safekit errd suspend -m AM

safekit errd on

-m AM

Resumes the monitoring of processes suspended with

safekit errd suspend (for the application module AM).

With SafeKit < 8.2, use
safekit errd resume -m AM

safekit errd list

-m AM

Lists all processes monitored by SafeKit (including SafeKit

processes) and defined in the application module AM.

The list displayed may be truncated due to internal limits.

The full list can be found in the file

SAFEVAR/modules/AM/errdlist.

SAFEVAR=/var/safekit on Linux and

SAFEVAR=c:\safekit\var on Windows if c: is the

installation drive.

safekit kill

-

name="process_name"

[-argregex="…"]

-level="kill_level"

<errd> component must run.

• level="test": only display the process list

• level="terminate": kill processes

• level="9": send SIGKILL signal to processes (Linux

only)

• level="15": send SIGTERM signal to processes (Linux

only)

• Windows examples ("class CatlRegExp" for more

information)

safekit kill -name="notepad.exe"

-argregex=".*myfile.*" -level="terminate"

safekit kill -name="notepad.exe"

-argregex="c:\\myrep\\myfile.*"

-level="terminate"

• Linux examples ("man regex" for more information)

safekit kill -name="vi"

-argregex=".*myfile.*" -level="9"

 Userconfig.xml for a module configuration

39 A2 38MC 05 263

safekit kill -name="vi"

-argregex="/myrep/myfile.*"

-level="9"

13.10 Checkers - <check>

SafeKit provides checkers that test a critical element and affect the state of a module

resource based on the test result. Upon error detection by a checker, the failover

machine performs an action on the module according to the failover rule associated with

the checker. For a complete description, see section 13.10.3.

The checkers provided by SafeKit are:

 section 13.11 “TCP checker - <tcp>”

 section 13.12 “Ping checker - <ping>”

 section 13.13 “Interface checker - <intf>”

 section 13.14 “IP checker - <ip>”

 section 13.15 “Custom checker - <custom>”

 section 13.16 “Module checker - <module>”

 section 13.17 “Splitbrain checker - <splitbrain>”

13.10.1 <check> example

All built-in checkers are configured under a single <check> section:

<check>

 <!-- Insert below <tcp> <ping> <intf> <ip> <custom> <module> <splitbrain> tags

-->

</check>

13.10.2 <check> syntax

<check>

 <tcp …>

 <to …/>

 </tcp>

 …

 <ping …>

 <to …/>

 </ping>

 …

 <intf …>

 <to …/>

 </intf>

 …

 <ip …>

 <to …/>

 </ip>

 …

 <custom …/>

 …

 <module …>

 [<to …/>]

 </module>

SafeKit User's Guide

264 39 A2 38MC 05

…

 <splitbrain …/>

</check>

The <check> tag and full subtree can be changed with a dynamic

configuration.

13.10.3 <checker> description

A checker tests a critical element (by default every 10 seconds) and affects the state of

the associated resource, setting it to up or down based on the test result. The failover

machine evaluates the failover rules and executes the action associated with the checker

when the resource changes state.

• The initial state of the resource is init. The failover machine keeps the module in the

WAIT (Transient) state as long as at least one resource used by a rule with a

wait action is in the init state.

• If the test fails, the associated resource is set to down. The failover rule associated

with the checker determines which action to take in this case. Possible actions on the

module are restart, stop, stopstart, or wait.

o The restart action triggers a local restart of the application without changing the

module's state.

o The actions stop, stopstart, and wait involve stopping the module, and

consequently the application, followed by an automatic restart in the cases of

stopstart and wait. Stopping the module may trigger a failover to the other

node if it is (Ready).

o When the action is wait, the module remains stuck in the WAIT (NotReady)

state as long as the resource is down.

The actions restart, stopstart, and wait increment the error detection counter.

When this counter exceeds the maxloop limit within the time interval loop_interval

(by default, on the 4th error detection within 24 hours; see section 13.2.3), the

module is stopped.

 Userconfig.xml for a module configuration

39 A2 38MC 05 265

• If the test succeeds, the associated resource is set to up. This triggers the implicit

wakeup action if the associated action is wait. The module exits the WAIT

(NotReady) state and continues its normal startup process.

The configuration of the checker determines:

• The name of the associated resource

• Optionally, the name of the associated failover rule and the action

13.10.3.1 Module resource associated with a checker

• The initial state of the resource is init

• If the test fails, the associated resource is set to down

• If the test succeeds, the associated resource is set to up

For a description of the resources, see section 13.18.4.1.

The name of the resource associated with the checker is determined from its

configuration:

• The resource class is the value of the XML tag of the checker: tcp, ping, intf, ip,

custom, module or splitbrain

• The resource id is the value of the ident attribute.

For example, for the following configuration of a ping checker:

<check>

 <ping ident="testR2" action="wait">

 <to addr="R2"/>

 </ping>

</check>

The associated resource is named ping.testR2.

The current value of the resource is visible:

• via the web console as described in section 3.4.4.2

• with the command safekit state -v -m AM (where AM is the name of the module)

…
ping.testR2 down yyyy-mm-dd

State changes of the resource are visible in the module log:

• via the web console as described in section 3.4.4.1

• with the command safekit logview -A -m AM (where AM is the name of the

module)

I | Resource ping.testR2 set to up by pingcheck
…
C | Resource ping.testR2 set to down by pingcheck

SafeKit User's Guide

266 39 A2 38MC 05

13.10.3.2 Failover rule associated with checker

The failover rule associated with the checker defines which action to take when its

resource goes down. For a description of the failover rules, see section 13.18.4.2.

The possible actions for the module are restart, stop, stopstart or wait.

The failover rule associated with the checker is determined based on its configuration:

• The checkers intf, ip, module, and splitbrain have a predefined default rule that

applies to all resources of that type:

/* rule for module checkers */

module_failure: if (module.? == down) then wait();

/* rule for interface checkers */

interface_failure: if (intf.? == down) then wait();

/* rule for ip checkers */

ip_failure: if (ip.? == down) then stopstart();

/* rules for splitbrain */

splitbrain_failure: if (splitbrain.uptodate == down) then wait();

• The checkers tcp, ping, and custom have a rule generated with the value of the

action attribute if it is set to stop, stopstart, restart or wait.

For example, for the following configuration of a ping checker:

<check>

 <ping ident="testR2" action="wait">

 <to addr="R2"/>

 </ping>

</check>

The generated rule is named :

p_testR2 : if (ping.testR2 == down) then wait();

The name of the rule has as a prefix the first letter of the checker name (t, p or c),

followed by _, then the value of the attribute ident.

• The tcp, ping, and custom checkers do not have a failover rule if the value of the

action attribute in their configuration is set to noaction. In this case, the user must

explicitly add the associated failover rule in the module configuration. For example,

for the following configuration of a custom checker, the failover rule is added

explicitly :

<check>

 <custom ident="checkfile" exec="checker.ps1"

 arg="c:\safekit\checkfile" when="prim" action="noaction"/>

</check>

<failover>

 <![CDATA[

 checkfile_failure: if(custom.checkfile == down) then restart();

]]>

</failover>

When the failover rule is activated, it is visible:

 Userconfig.xml for a module configuration

39 A2 38MC 05 267

• Through the web console in the detailed status of the module described in section

3.4.2.2

• By a message in the module log like the following:

C | Action wait according to the failover rule p_testR2

The module log can be viewed:

o Through the web console as described in section 3.4.4.1

o Using the command safekit logview -A -m AM (where AM is the name of the

module)

13.11 TCP checker - <tcp>

By default, there is a restart action on the module when the tcp checker detects a

connection failure to the TCP service.

Since SafeKit 8.2.3, the action can be configured using the action attribute of the <tcp>

tag.

Insert the <tcp> tag into the <check> section if this one is already defined.

13.11.1 <tcp> example

<check>

 <tcp ident="R1test" when="prim" action="restart" >

 <to addr="R1" port="80"/>

 </tcp>

</check>

• The resource associated with the checker is named tcp.R1test (with the prefix

tcp.)

• The generated failover rule, which performs a restart when the resource goes down,

is named t_R1test (with the prefix t_) and is equivalent to:

t_R1test: if (tcp.R1test == down) then restart();

For a description of checkers, refer to section 13.10.3.

See also example in section 15.5. It presents the configuration via the web

console along with the corresponding userconfig.xml.

13.11.2 <tcp> syntax

 <tcp

 ident="tcp_checker_name"

 when="prim|second|both|pre"

 [action=" stop|stopstart|restart|wait|noaction"]

 >

 <to

 addr="IP address or name to check"

 port="TCP port to check"

 [interval="10"]

SafeKit User's Guide

268 39 A2 38MC 05

 [timeout="5"]

 />

 </tcp>

Since SafeKit 8.2.3, use the action attribute to define the action to be taken

when an error is detected by the tcp checker.

Before SafeKit 8.2.3, the action was static and defined by the default failover

rule that applies to all tcp class resources:

tcp_failure: if (tcp.? == down) then restart();

13.11.3 <tcp> attributes

<tcp Set as many <tcp> sections as there are TCP checkers.

ident="tcp_checker_name" TCP checker name.

It defines the resource associated with the checker:

tcp.tcp_checker_name (with the prefix tcp.)

when="prim|second|both"

[action="stop|stopstart|

restart|noaction"]

Use this value to test an internal TCP service of the

application once it has started:

• when="prim" for a mirror module

The checker is started after/stopped before the

execution of the start_prim/stop_prim scripts.

• when="both" for a farm module

The checker is started after/stopped before the

execution of the start_both/stop_both scripts.

• when="second" for a mirror module

The checker is started after/stopped before the

execution of the start_second/stop_second scripts.

Since SafeKit 8.2.3, you can configure the action to take

when an error is detected with:

• action="stop|stopstart|restart"

stop, stopstart or restart the module. The

name of the associated failover rule is

t_tcp_checker_name (with the prefix t_)

• action="noaction"

No action is generated automatically. The action

must be explicitly written in the <failover> tag (see

section 13.18).

Default value: action="restart"

 Userconfig.xml for a module configuration

39 A2 38MC 05 269

when="pre"

action="wait|noaction"

Use this value to test an external TCP service before the

application starts:

• when="pre"

The checker starts after/ends before the execution of

the prestart/poststop scripts

Since SafeKit 8.2.3, you can configure the action to be

taken in case of error detection with:

• action="wait"

wait on the module. The name of the associated

failover rule is t_tcp_checker_name (with the prefix

t_)

• action="noaction"

No failover rule generated. The action must be

explicitly written in the <failover> tag (see section

13.18).

<to

addr="IP address or

name"
IP address or name to check (ex.: 127.0.0.1 for a local

service).

IPv4 or IPv6 address.

port="value" TCP port to check.

[interval="10"] Interval in seconds between two connections trials.

Default value: 10 seconds

[timeout="5"] Connection establishment timeout in seconds.

Default value: 5 seconds

</tcp>

13.12 Ping checker - <ping>

By default, there is a wait action on the module when the ping checker detects a ping

failure on a device.

Since SafeKit 8.2.3, the action can be configured using the action attribute of the

<ping> tag.

Insert the <ping> tag into the <check> section if this one is already defined.

13.12.1 <ping> example

<check>

 <ping ident="testR2" action="wait">

 <to addr="R2"/>

 </ping>

SafeKit User's Guide

270 39 A2 38MC 05

</check>

• The resource associated with the checker is named ping.testR2 (with the prefix

ping.)

• The generated failover rule, which performs a wait when the resource goes down, is

named p_testR2 (with the prefix p_) and is equivalent to:

p_testR2: if (ping.testR2== down) then wait();

For a description of checkers, refer to section 13.10.3.

See also the example in section 15.6. It presents the configuration via the

web console along with the corresponding userconfig.xml.

13.12.2 <ping> syntax

 <ping

 ident="ping_checker_name"

 [when="pre|prim|second|both"]

 [action="wait|stop|stopstart|restart|noaction"]

 >

 <to

 addr="IP address or name to check"

 [interval="10"]

 [timeout="5"]

 />

 </ping>

13.12.3 <ping> attributes

<ping Set as many ping sections as there are ping checkers.

ident="ping_checker_nam

e"
Ping checker name.

It defines the resource associated with the checker:

ping.ping_checker_name (with the prefix ping.)

when="pre"

action="wait|noaction"

Use this value to test an external device before the

application starts.

• when="pre"

The checker starts after/ends before the execution of

the prestart/poststop scripts

Since SafeKit 8.2.3, you can configure the action to be

taken in case of error detection with:

• action="wait"

wait on the module. The name of the associated

failover rule is t_tcp_checker_name (with the prefix

t_)

• action="noaction"

No failover rule generated. The action must be

 Userconfig.xml for a module configuration

39 A2 38MC 05 271

explicitly written in the <failover> tag (see section

13.18).

Default value : when="pre" action="wait"

when="prim|second|both"

action="stop|stopstart|

restart|noaction"

Use this value to test a device after the application has

started:

• when="prim" for a mirror module

The checker is started after/stopped before the

execution of the start_prim/stop_prim scripts.

• when="both" for a farm module

The checker is started after/stopped before the

execution of the start_both/stop_both scripts.

• when="second" for a mirror module

The checker is started after/stopped before the

execution of the start_second/stop_second scripts.

Since SafeKit 8.2.3, you can configure the action to take

when an error is detected with:

• action="stop|stopstart|restart"

stop, stopstart or restart the module. The name

of the associated failover rule is

p_ping_checker_name (with the prefix p_)

• action="noaction"

No action is generated automatically. The action must

be explicitly written in the <failover> tag (see

section 13.18).

<to

addr="IP address or

name"
External IP address or name to check.

IPv4 or IPv6 address.

[interval="10"] Interval in seconds between two ping requests.

Default value: 10 seconds

[timeout="5"] Reply timeout in seconds to the ping.

Default value: 5 seconds

</ping>

SafeKit User's Guide

272 39 A2 38MC 05

13.13 Interface checker - <intf>

By default, there is a wait action on the module when the intf checker detects a failure

on the interface.

Insert the <intf> tag into the <check> section if this one is already defined.

13.13.1 <intf> example

<check>

 <intf ident="test_eth0">

 <to local_addr="192.168.1.10"/>

 </intf>

</check>

• The resource associated with the checker is named intf.test_eth0 (with the prefix

intf.)

• The failover rule, which performs a wait when an intf class resource goes down, is

static and defined by the default failover rule:

interface_failure: if (intf.? == down) then wait();

For a description of checkers, refer to section 13.10.3.

See also the example in section 15.10. It presents the configuration via the

web console along with the corresponding userconfig.xml.

13.13.2 <intf> syntax

 <intf

 ident="intf_checker_name"

 [when="pre"]

 >

 <to

 local_addr="interface_physical_IP_address"/>

 </intf>

13.13.3 <intf> attributes

<intf

<intf> sections are automatically generated on

network interface when <interface

check="on"> is set (see the virtual IP definition

in section 13.5).

ident="intf_checker_name

"
Interface checker name.

It defines the resource associated with the checker:

intf.intf_checker_name (with the prefix intf.)

 [when="pre"] Fixed value.

 Userconfig.xml for a module configuration

39 A2 38MC 05 273

• when="pre"

The checker starts after/ends before the execution

of the prestart/poststop scripts

In case of error detection, the action is wait. The name

of the failover rule, interface_failure, is static and

predefined.

<to local_addr="IP

addess" />
Physical IP address configured on the network interface

to check.

IPv4 or IPv6 address.

</intf>

13.14 IP checker - <ip>

By default, there is a stopstart of the module when the IP checker detects that the IP

address is not configured locally. On Windows, it also detects conflicts with that address.

Insert the <ip> tag into the <check> section if this one is already defined.

13.14.1 <ip> example

<check>

 <ip ident="ip_check" >

 <to addr="192.168.1.10" />

 </ip>

</check>

• The resource associated with the checker is named ip.ip_check (with the prefix

ip.)

• The failover rule, which performs a stopstart when an ip class resource goes down,

is static and defined by the default failover rule:

ip_failure: if (ip.? == down) then stopstart();

For a description of checkers, refer to section 13.10.3.

See also the example in section 15.11. It presents the configuration via the

web console along with the corresponding userconfig.xml.

13.14.2 <ip> syntax

 <ip

 ident="ip_checker_name"

 [when="prim"|"both"]

 >

 <to

 addr="IP address or name to check"

 [interval="10"]

 />

 </ip>

SafeKit User's Guide

274 39 A2 38MC 05

13.14.3 <ip> attributes

<ip

<ip> sections are automatically generated on the

virtual IPs when <virtual_addr check="on"> is

set (see the virtual IP definition in section 13.5).

ident="ip_checker_name" Interface checker name.

It defines the resource associated with the checker:

ip.ip_checker_name (with the prefix ip.)

[when="prim"|"both"] Default if not set.

• when="prim" for a mirror module

The checker is started after/ended before the

execution of the start_prim/stop_prim scripts.

• when="both" for a farm module

The checker is started after/ended before the

execution of the start_both/stop_both scripts.

In case of error detection, the action is stopstart. The

name of the failover rule, ip_failure, is static and

predefined.

<to

addr="IP address or

name"
Local IP address or name to check.

IPv4 or IPv6 address.

[interval="10"] Interval in seconds between two checks.

Default value: 10 seconds

</ip>

13.15 Custom checker - <custom>

A custom checker is an executable (script or binary) that you develop to test a resource

or application. It consists of a loop that performs a test at appropriate intervals. Its role

is to set the associated resource's status to up or down. Then, a failover rule decides the

action to be taken on the module when the resource is down.

Since SafeKit 8, the action can be configured using the action attribute of the <custom>

tag.

Insert the <custom> tag into the <check> section if this one is already

defined.

13.15.1 <custom> example

• Example with action!="noaction"

<check>

 Userconfig.xml for a module configuration

39 A2 38MC 05 275

 <custom ident="AppChecker" when="prim" exec="mychecker" action="stopstart"/>

</check>

o The resource associated with the checker is named custom.AppChecker (with the

prefix custom.)

o The generated failover rule, which performs a stopstart when the resource goes

down, is named c_AppChecker (with the prefix c_) and is equivalent to:

c_AppChecker: if (custom.AppChecker == down) then stopstart();

• Example with action="noaction"

<check>

 <custom ident="AppChecker" when="prim" exec="mychecker" action="noaction"/>

</check>

No failover rule is generated. The user has the option to define one explicitly in the

<failover> tag. For example:

…

<failover>

 <![CDATA[

 custom_failure: if (custom.AppChecker == down) then stopstart();

]]>

</failover>

In SafeKit < 8, the action attribute did not exist, and the action was

configured by defining a failover rule in the <failover> tag, as shown in the

example above. Therefore, the default value of the action attribute is

equivalent to noaction to maintain backward compatibility with older

configurations.

See also the example in section 15.7. It presents the configuration via the

web console along with the corresponding userconfig.xml.

13.15.2 <custom> syntax

<custom

 ident="custom_checker_name"

 when="pre|prim|second|both"

 exec="executable_path"

 arg="executable_arguments"

 action="wait|stop|stopstart|restart|noaction"

/>

13.15.3 <custom> attributes

<custom Set as many custom sections as there are custom

checkers.

ident="custom_checker_na

me"
Custom checker name.

It defines the resource associated with the checker:

SafeKit User's Guide

276 39 A2 38MC 05

custom.custom_checker_name (with the prefix

custom.)

A custom checker must set its associated resource state

itself, using the command

safekit set -r custom.custom_checker_name -v

up|down

Note that SafeKit automatically initializes the

state of the resource to init, and the failover

machine stays in the WAIT state if its value is not

set.

when="pre"

action="wait"|"noaction"

Use this value to test an external component before the

application starts:

• when="pre"

The checker starts after/ends before the execution of

the prestart/poststop scripts

Since SafeKit 8, you can configure the action to be

taken in case of error detection with:

• action="wait"

wait on the module. The name of the associated

failover rule is c_custom_checker_name (with the

prefix c_)

• action="noaction"

No failover rule generated. The action must be

explicitly written in the <failover> tag (see section

13.18).

when="prim"|"second"|"bo

th"

action="stop"|"stopstart

"|"restart"|"noaction"

Use this value to test a component after the application

starts:

• when="prim" for a mirror module

The checker is started after/stopped before the

execution of the start_prim/stop_prim scripts.

• when="both" for a farm module

The checker is started after/stopped before the

execution of the start_both/stop_both scripts.

• when="second" for a mirror module

The checker is started after/stopped before the

execution of the start_second/stop_second scripts.

Since SafeKit 8, you can configure the action to take

when an error is detected with:

• action="stop|stopstart|restart"

stop, stopstart or restart the module. The

name of the associated failover rule is

c_custom_checker_name (with the prefix c_)

 Userconfig.xml for a module configuration

39 A2 38MC 05 277

• action="noaction"

No failover rule generated. The action must be

explicitly written in the <failover> tag (see section

13.18).

exec="executable_path" Defines the executable path of the custom checker.

Can be a binary executable or a script file.

When the path of executable_path is relative, it is

relative to SAFEUSERBIN. In this case, put your

executable file in SAFE/modules/AM/bin/ of your

application module and use a relative path. See section

10.1 for more information on path values.

We recommend a relative path and an executable inside

the module.

• In Windows, the executable can be a binary or a

ps1, vbs or cmd script

• In Linux, the executable can be a binary or a shell

script

arg="executable_argument

s"
Defines the executable arguments when the custom

checker is started.

13.16 Module checker - <module>

By default, there is a wait of the module when the module checker detects the

unavailability of another SafeKit module. The module checker also performs a stopstart

action when it detects that the external module has been restarted (whether by a restart,

a stopstart, or because of a failover). The module checker retrieves the status of the

module by connecting to the SafeKit web service running on the server where the module

is activated (see section 10.8 for details on the web service).

Insert the <module> tag into the <check> section if this one is already

defined.

13.16.1 <module> example

• Example using the default configuration of the SafeKit web service (protocol : HTTP,

port : 9010) :

<check>

 <module name="mysql">

 <to addr="172.24.190.21" port="9010"/>

 </module>

</check>

mysql is the name of the external module and 172.24.190.21 is its virtual IP

address.

o The resource associated with the checker is named

module.mysql_172.24.190.21 (with the prefix module.)

SafeKit User's Guide

278 39 A2 38MC 05

o The failover rule, which performs a wait when a module class resource goes down,

is static and defined by the default failover rule:

module_failure: if (module.? == down) then wait();

• The same example using the secured configuration of the SafeKit web service

(protocol : HTTPS, port : 9453) :

<check>

 <module name="mysql">

 <to addr="172.24.190.21" port="9453" secure="on"/>

 </module>

</check>

For a description of checkers, refer to section 13.10.3.

See also examples in section 15.9. It presents the configuration via the web

console along with the corresponding userconfig.xml.

13.16.2 <module> syntax

 <module

 [ident="module_checker_name"]

 name="external_module_name">

 [<to

 addr="IP addres or name the Safekit server running the external module"

 port="port of the SafeKit web server"

 [interval="10"]

 [timeout="5"]

 [secure="on"|"off"]

 />]

</module>

13.16.3 <module> attributes

<module Set as many <module> sections as there are

module checkers.

name="external_module_name"]
Name of the module checker.

[ident="module_checker_name"

]

Name of the external SafeKit module to check.

It defines the resource associated with the

checker:

module.module_checker_name (with the prefix

module.)

If this attribute is not provided, the resource name

is constructed from the name and addr attributes :

module.external_module_name_address_or_nam

e

 [<to Definition of the server(s) running the external

module to check.

 Userconfig.xml for a module configuration

39 A2 38MC 05 279

Default is the local server.

 addr="address_or_name" IP address or name of the external module.

IPv4 or IPv6 address.

 port="port of the SafeKit
web service"

Port of the SafeKit web service.

9010 for HTTP ; 9453 for HTTPS

 [interval="10"] Interval in seconds between two checks.

Default value: 10 seconds.

 [timeout="5"] Check reply timeout in seconds.

Default value: 5 seconds

 [secure="on"|"off"] Use HTTP protocol (secure="off") or HTTPS

(secure="on")

Default value: off

 />]

</module>

13.17 Splitbrain checker - <splitbrain>

SafeKit provides a split-brain checker that is suits mirror architectures. Split-brain is a

situation where, due to temporary failure of all network links between SafeKit nodes, and

possibly due to software or human error, both nodes switched to the primary role while

isolated. This is a potentially harmful state, as it implies that the application is running on

both nodes. Moreover, when file replication is enabled, modifications to the data are

made on the two nodes.

The split-brain checker detects the loss of all connectivity between nodes and selects only

one node to become the primary. The other node is not up-to-date anymore and goes

into the WAIT state until:

• the heartbeat becomes available again

or

• the administrator runs safekit commands to force the start as primary (safekit

stop then safekit prim).

The primary node election is based on the ping of an IP address, called the witness. The

network topology must be designed so that only one node can ping the witness in case of

split-brain. If this is not the case, both nodes will go primary.

• Ping between nodes and witness must be enabled

• Since SafeKit 8.2.1, multiple witnesses can be defined. This makes it

possible to tolerate the failure of one witness, at least one of which must

be accessible.

SafeKit User's Guide

280 39 A2 38MC 05

Insert the <splitbrain> tag into the <check> section if this one is already

defined.

13.17.1 <splitbrain> example

<check>

 <splitbrain ident="witness" exec="ping" arg="192.168.1.100 192.168.2.120"/>

</check>

• The resource associated with the checker is named splitbrain.witness (with the

prefix splitbrain.)

• In case of network isolation between nodes, the split-brain checker assigns the

splitbrain.uptodate resource as up or down according to access to the witness.

• The failover rule, which performs a wait when the splitbrain.uptodate resource

goes down, is static and defined by the default failover rule:

splitbrain_failure: if (splitbrain.uptodate == down) then wait();

For a description of checkers, refer to section 13.10.3.

See also example in section 15.8. It presents the configuration via the web

console along with the corresponding userconfig.xml.

13.17.2 <splitbrain> syntax

 <splitbrain

 ident="witness"

 exec="ping"

 arg="witness1_IP_name witness2_IP_name"

 />

13.17.3 <splitbrain> attributes

<splitbrain Set only one split-brain checker.

ident="witness_name" Custom checker name.

It defines the resource associated with the checker:

splitbrain.witness_name (with the prefix custom.)

The resource is assigned to :

• up, if at least one witness responds

• down, if not all witnesses respond

[when="pre"] Fixed value.

• when="pre"

The checker starts after/ends before the execution of the

prestart/poststop scripts

On split-brain detection:

 Userconfig.xml for a module configuration

39 A2 38MC 05 281

• The node that has access to the witness

(splitbrain.witness_name="up") sets the resource

splitbrain.uptodate to up and becomes primary

• The other server that does not have access to the witness

(splitbrain.witness_name="down") sets the resource

splitbrain.uptodate to down. This triggers the wait action

of the static and predefined failover rule, named
splitbrain_failure.

exec="ping" Fixed value.

Use a pinger to ping the witness and set

splitbrain.witness_name state.

arg="

witness1_IP_name

witness2_IP_name"

List of IP addresses or witness names to ping.

IPv4 or IPv6 address.

Multiple witness definition supported since

SafeKit 8.2.1.

</splitbrain>

13.18 Failover machine - <failover>

SafeKit provides checkers that test a critical element and affect the state of the

associated resource based on the test result. Upon error detection by a checker, the

failover machine executes an action on the module according to the failover rule

associated with the checker. For a complete description, see section 13.10.

Some SafeKit components (<heart>, <rfs>, <vipd>, <errd>) manage their own

resources and provide their own failover rules. These rules should not be modified or

deleted, as doing so may lead to abnormal behavior of SafeKit.

The failover machine regularly evaluates (by default, every 5 seconds) the overall state

of all resources and applies an action based on the true failover rules.

In farm architecture, the failover machine can work only on the states of local resources

whereas in mirror architecture, the failover machine can work on the states of local and

remote resources.

As the states of resources are exchanged on heartbeat channels, it is better to have

several heartbeat channels (see section 13.3 for heartbeats definition).

Failover rules can be written in a simple language specific to SafeKit or in Lua using

SafeKit function calls

13.18.1 <failover> example

The examples of rules written in this section are added to the default rules or those

generated based on the configuration of the checkers.

• Example of adding a rule written in the failover machine language

<failover>

 <![CDATA[

 custom_failure: if (custom.AppChecker == down) then stopstart();

https://www.lua.org/

SafeKit User's Guide

282 39 A2 38MC 05

]]>

</failover>

• Example of adding a rule using the Lua language and the if_then function call

The prefix "--Lua Rules" indicates that the following section should be interpreted

using the Lua interpreter.

<failover>

 <![CDATA[

 --Lua Rules

 Rules = Rules +

 {

custom_failure=if_then("custom.AppChecker","down",Action.stopstart),_group="check

er"}

]]>

</failover>

• Example of a rule to disable the default rule named ip_failure and add the rule
allip_failure

<failover>

<![CDATA[

 --Lua Rules

 Rules.disable("ip_failure")

 -- Add here any Lua rules intended to replace the mentioned rules, or write the

legacy rules in another CDATA section

]]>

<![CDATA[

 allip_failure: if (ip.* == down) then stopstart();

]]>

</failover>

Use a separate <![CDATA[…]]> section for each language.

13.18.2 <failover> syntax

<failover [extends="yes"] [period="5000"] [handle_time="15000"]>

<![CDATA[

 label: if (expression) then action;

 …

]]>

</failover>

The <failover> tag and subtree cannot be changed with a dynamic

configuration.

13.18.3 <failover> attributes

<failover

[extends="yes"|"no"] • extends="yes"

The new failover rules extend the default failover rules

(see section 13.18.4 for its definition).

 Userconfig.xml for a module configuration

39 A2 38MC 05 283

• extends="no"

The new failover rules overwrite the default one (avoid

this configuration).

Default value: yes.

[period="5000"] Period in milliseconds between two evaluations of failover

rules.

Default value: 5000 milliseconds (5 seconds)

[handle_time="15000"] A failover action must be stable (the same) at least during

the time handle_time (in milliseconds) before being applied

by the failover machine.

Default value: 15000 milliseconds (15 seconds).

handle_time must be a multiple of the period value.

13.18.4 <failover> description

13.18.4.1 Module resources

The syntax to design the resources is as follows:

resource ::= [local. | remote.] 0/1resource_class.resource_id (default: local)

resource_class ::= ping | intf | tcp | custom | module | heartbeat | rfs

resource_id ::= * | ? | name

resource_state ::= init | down | up | unknown

init

Special initialization state of a resource when the checker is not started.

If a resource in the init state is used in a failover rule, SafeKit does

evaluate the rule.

up Resource OK

down Resource KO

unknown
Special state of a remote resource; the remote state is unknown at the

test time (ex.: when the remote module is stopped).

13.18.4.2 Failover rules

SafeKit provides default failover rules and generated failover rules from the module

checkers’ configuration. Users can also write their own failover rules.

Default failover rules

The default failover rules for the checkers (module, intf, ip, splitbrain) are:

<failover>

<![CDATA[

 /* rule for module checkers */

 module_failure: if (module.? == down) then wait();

SafeKit User's Guide

284 39 A2 38MC 05

 /* rule for interface checkers */

 interface_failure: if (intf.? == down) then wait();

 /* rule for ip checkers */

 ip_failure: if (ip.? == down) then stopstart();

 /* rules for splitbrain */

 splitbrain_failure: if (splitbrain.uptodate == down) then wait();

]]>

</failover>

There are also:

• failover rules dedicated to file replication management, heartbeats…

• the Implicit_wakeup rule that is applied when no wait rule applies. It runs the

wakeup action.

Since SafeKit 7.5, default failover rules are using a new syntax based on the

Lua language.

Generated failover rules

The checkers tcp, ping, and custom have a rule generated when the value of the action

attribute if it is set to stop, stopstart, restart or wait.

The name of the rule has as a prefix the first letter of the checker’s name (t, p or c),

followed by _, then the value of the attribute ident (e.g. p_router, t_service, c_app).

Configured failover rules

The user can also define his own rules into the section <failover><![CDATA[…

]]></failover>. By default, these are added to the default and generated rules.

See examples in section 13.18.1.

Failover rules can be written using one of the following syntaxes:

• Failover machine language

label: if (expression) then action;

label ::= string

action ::= stop() | stopstart() | wait() | restart() | swap()

expression ::= (expression)

| ! expression

| expression && expression

| expression || expression

| expression == expression

| expression != expression

| resource ::= [local. | remote.] 0/1resource_class.resource_id

| resource_state

• Lua language

o if_then function call to define a rule

https://www.lua.org/

 Userconfig.xml for a module configuration

39 A2 38MC 05 285

--Lua Rules

Rules = Rules +

{ label=if_then("resource","resource_state",action),_group="checker" }

label ::= string

action ::= Action.stop | Action.stopstart | Action.wait |

Action.restart | Action.swap

| resource ::= resource_class.resource_id

| resource_state

o Rules.disable function call to disable a rule based on its label

--Lua Rules

Rules.disable("failover_rule_label")

Use a separate <![CDATA[…]]> section for each language.

13.18.4.3 Actions

The actions (restart(), stopstart(), stop(), swap()) of the failover machine are

equivalent to control commands (with the -i identity parameter) described in section

9.3.

maxloop / loop_interval / automatic_reboot are applied if -i identity

is passed to commands. This is the case when called from the failover

machine or checkers.

SafeKit User's Guide

286 39 A2 38MC 05

 Scripts for a module configuration

39 A2 38MC 05 287

14. Scripts for a module configuration

 Section 14.1 “List of scripts”

 Section 14.2 “Variables and arguments passed to scripts”

 Section 14.3 “Scripts output”

 Section 14.4 “Scripts execution automaton”

 Section 14.5 “SafeKit special commands for scripts”

Examples of scripts are given in section 15.

To enable scripts call, <user> tag must be defined in userconfig.xml as described in

section 13.7.

Scripts must executables:

• in Windows, an executable with the extension and type: .cmd, .vbs, .ps1,.bat

or .exe

• in Linux, any type of executable

Each time you update scripts, you must apply the module configuration onto the servers

(with the SafeKit console or command).

During the configuration phase, scripts are copied from

SAFE/modules/AM/bin in the execution environment directory

SAFE/private/modules/AM/bin (=SAFEUSERBIN, do not touch scripts at this

place) where AM is the module name.

14.1 List of scripts

Below the list of scripts that can be defined by the user. The essential scripts start/stop

are those that start and stop the application within the module.

14.1.1 Start/stop scripts

start_prim

stop_prim

Scripts for a mirror module.

To start & stop application on the ALONE or PRIM server

start_both
stop_both

Scripts for a farm module.

To start & stop application on all UP servers in a farm cluster

In the special case they are defined in a mirror module, they are

also executed on both servers (PRIM, SECOND or ALONE)

start_second

stop_second

Special scripts for a mirror module

To start & stop application on the "SECOND" server

When the secondary server becomes the primary one,

stop_second followed by start_prim is executed

SafeKit User's Guide

288 39 A2 38MC 05

start_sec

stop_sec
Special scripts for a mirror module

stop_[both,

prim,

second,

sec] force

Scripts for all modules

The stop scripts are called twice: once for a graceful shutdown of

the application (without force as first argument), a second time

with a force parameter for a rapid shutdown (with force as first

argument).

prestart

poststop

Scripts for all modules

Executed at the very beginning of the module start and at its

end.

By default, prestart contains stop_sec, stop_second,

stop_prim, stop_both to stop application before starting the

module under the control of SafeKit.

transition

Script for all modules

This script is executed on state transitions described in section

14.4

14.1.2 Other scripts

config

config is called when executing the safekit config -m AM

command on the application module. You can make a special

application configuration in this script.

deconfig

deconfig is called when executing the safekit deconfig -m AM

command, which is itself called at the application module

uninstallation. You can remove a special application configuration

made previously in the config script.

confcheck

confcheck is called when executing the safekit confcheck -m AM

command on the application module. You can add in this script some

tests for checking changes on the application configuration files.

state

state is called when executing the safekit state -v -m AM

command on the application module. You can display a special state

of the application.

level
level is called when executing the safekit level -m AM command

on the application module. You can display the application version.

14.2 Variables and arguments passed to scripts

All scripts are called with 3 parameters:

• the current state (STOP,WAIT,ALONE,PRIM,SECOND,UP),

• the next state (STOP,WAIT,ALONE,PRIM,SECOND,UP)

• the action (start, stop, stopstart or stopwait).

 Scripts for a module configuration

39 A2 38MC 05 289

The stopwait argument is passed during the execution of the wait action

triggered by a checker.

The stop scripts are called twice:

• a first time for a graceful shutdown of the application

• a second time with a force parameter for a forced shutdown (with force as first

argument)

The environment variables that can be used inside scripts are:

• SAFE, SAFEMODULE, SAFEBIN, SAFEUSERBIN, SAFEVAR, SAFEUSERVAR (for

details, see section 10.1)

The definition of SAFEMODULE, which contains the name of the module, allows

omitting the -m AM option with the safekit command if it is to apply to the

SAFEMODULE.

• all variables defined in <user> tag of userconfig.xml (see section 13.7).

For an example with environment variables, refer to section 15.3.

14.3 Scripts output

14.3.1 Output into script log

By default (logging="userlog" in <user> tag of userconfig.xml), the stdout and

stderr of the script are redirected into the file
SAFEVAR/modules/AM/userlog_<year>_<month>_<day>T<time>_<script name>.ulog

where:

• SAFEVAR=C:\safekit\var in Windows and /var/safekit in Linux

• AM is the module name

• <year>_<month>_<day>T<time> are date and time of execution of the script

• <script name> is the script name

To insert a message into the script log, add the following command into the script:

echo "message"

or in PowerShell:

Write-Host "message"

14.3.2 Output into module log

To insert messages with level E or I into the AM module log, add the following command

into the script:

• in Windows

"%SAFE%/safekit" printe "message"

"%SAFE%/safekit" printi "message"

• in Linux

SafeKit User's Guide

290 39 A2 38MC 05

"$SAFE/safekit" printe "message"

"$SAFE/safekit" printi "message"

Level E messages are visible in the non-verbose log; level I messages are found in the

verbose log

In the execution environment of the AM script, the -m AM option is

unnecessary for the safekit command.

14.4 Scripts execution automaton

Most of the time, stop scripts are called twice (without the force parameter and then

with the force parameter). In that case the script name is written in italic.

For instance, first transition from STOP to WAIT calls the script transition

STOP WAIT start is called.

 Scripts for a module configuration

39 A2 38MC 05 291

Since SafeKit 8.2.4, when stopping the module, the stop_xxx scripts with

the force argument can be executed a second time before the poststop

call.

14.5 SafeKit special commands for scripts

Special commands are installed under SAFE/private/bin. Special commands can be

called directly in module scripts with %SAFEBIN%\specialcommand or

$SAFEBIN/specialcommand. Outside module scripts, use safekit -r command.

SafeKit User's Guide

292 39 A2 38MC 05

safekit -r

<special

command>

[<args>]

<special command> <args> executed within the SafeKit

environment. When the command name is not an absolute path,

the command is searched in SAFEBIN=SAFE/private/bin

directory.

14.5.1 Commands for Windows

14.5.1.1 sleep, exitcode, sync commands

On Windows, you can use the following basic commands:

• %SAFEBIN%\sleep.exe <timeout value in seconds>

To be used inside stop scripts because net stop service is not synchronous

• %SAFEBIN%\exitcode.exe <exit value>

To return an error value when the script exits

• %SAFEBIN%\sync.exe \\.\<drive letter:>

To sync file system cache of a disk

14.5.1.2 namealias command

%SAFEBIN%/namealias [-n | -s] <alias name>

-n to add a new NetBIOS name (se

t into start_prim) or -s to suppress the NetBIOS name (set into stop_prim)

You can also use the SafeKit command netnames (or the windows command nbtstat) to

list NetBIOS information.

14.5.2 Commands for Linux

14.5.2.1 Managing the crontab

$SAFEBIN/gencron

 [del | add]

 <user name>

 [all |<command name>]

 -c "<comment>"

• del to disable the entries in stop_prim (by

inserting comments)

• add to enable the entries in start_prim (by

removing comments)

• <user name> user name in the crontab

• all to apply on all entries

• <command name> to apply on the name of the

command

• <comment> header of the comment that will be

inserted

The following example applies to the crontab entry:

5 0 * * * $HOME/bin/daily.job >> $HOME/tmp/out 2>&1

For a mirror module, to manage this entry on the primary, insert :

• Its activation into start_prim

 Scripts for a module configuration

39 A2 38MC 05 293

$SAFEBIN/gencron add admin daily.job -c "SafeKit configuration for

$SAFEMODULE"

• Its deactivation into stop_prim

$SAFEBIN/gencron del admin daily.job -c "SafeKit configuration for

$SAFEMODULE"

14.5.2.2 Bounding command

$SAFEBIN/boundcmd

<timeout value> <command

path> [<args>]

• <timeout value> maximum time allocated to

execute the command

• <command path> path to the command to execute

• <args> optional arguments to the command

boundcmd returns the exit code of the command when the command terminates before

the timeout; otherwise, it exits with the value 2.

For example, to flush data on disk with a timeout of 30 seconds, run:

$SAFEBIN/boundcmd 30 /bin/sync 1>/dev/null 2>&1

14.5.3 Commands for Windows and Linux

safekit -r

processtree

list | kill …

List running processes as a tree (except for all) and optional kill

• safekit -r processtree list all

List all running processes.

• safekit -r processtree list <process command name>

List all running processes with the specified command name.

• safekit -r processtree kill <process command name>

List and kill all running processes with the specified

command name.

• safekit -r processtree list | kill <process command

name>| all <regular expression on the full command -

path and arguments>

List (and kill) all running process with the specified

command name and arguments.

For regular expression syntax:

• in Windows, see class CatlRegExp

• In Linux, see man regex

• Windows examples

safekit -r processtree kill notepad.exe ".*myfile.*"

safekit -r processtree list all "mirror"

• Linux examples

safekit -r processtree kill vi ".*myfile.*"

SafeKit User's Guide

294 39 A2 38MC 05

safekit -r processtree list all "mirror"

safekit incloop

-m AM -i

<handler name>

The module has a maxloop counter, the number of restart,

stopstart and wait of the module on error detection. The

module is stopped when this counter reaches the maxloop value

over the loop_interval period.

When running special handlers, the maxloop counter is not

incremented. To increment it, use the command:

safekit incloop -m AM -i <handler name>

It increments the maxloop counter for the module AM and returns

1 when the limit has been reached.

For an example, refer to section 15.4.2.

safekit

resetloop

-m AM [-i

<handler name>]

Reset the maxloop counter to the value 0

safekit

checkloop -m AM

For checking the maxloop counter for the module AM, use the

command: safekit checkloop -m AM

• It returns 0 when the maxloop counter is not reached or the

last increment occurred outside loop_interval

• It returns 1 when the maxloop counter is reached and the

last increment occurred during loop_interval

39 A2 38MC 05 295

15. Examples of module configurations

 Section 15.1 “Mirror module example with mirror.safe”

 Section 15.2 “Farm module example with farm.safe”

 Section 15.3 “Macro and script variables example with hyperv.safe”

 Section 15.4 “Process monitoring example with softerrd.safe”

 Section 15.5 “TCP checker example”

 Section 15.6 “Ping checker example”

 Section 15.7 “Custom checker example with customchecker.safe”

 Section 15.8 “Split-brain checker example”

 Section 15.9 “Module checker example”

 Section 15.10 “Interface checker example”

 Section 15.11 “IP checker example”

 Section 15.12 “Virtual hostname example with vhost.safe”

Some examples are taken from the modules delivered with the SafeKit package, under

SAFE/Application_Modules. Many real integration examples are also described in

SafeKit Quick Installation Guides.

The .safe are platform dependent and therefore different in Windows and

Linux, mainly for module scripts.

The module configuration can be modified in two ways:

• either through the module configuration wizard in the SafeKit web console (see

section 3.3)

• or by directly editing the files SAFE/module/AM/conf/userconfig.xml or the

scripts under SAFE/module/AM/bin (where AM is the name of the installed module)

To take effect, at the next module startup, the new configuration must be applied:

• either at the last step of the module configuration wizard

• or with the command safekit config -H "node1,node2" -E AM executed on

the node where the files have been modified

Before applying the configuration, close all editors, file explorers, shells, or

command prompts that may access a file under SAFE/modules/AM on the

nodes.

15.1 Mirror module example with mirror.safe

Below is the configuration of the mirror module, mirror.safe.

To test a mirror module, refer to section 4.2.

https://www.evidian.com/products/high-availability-software-for-application-clustering/safekit-quick-installation-guides/

SafeKit User's Guide

296 39 A2 38MC 05

The following description is for Windows. For Linux, please refer to

mirror.safe delivered with the Linux package that includes Linux

configuration and scripts.

15.1.1 Cluster configuration with two networks

The cluster configuration includes two networks, such as default and private. The

second network is designed to illustrate the configuration of a dedicated network for

replication traffic within the module configuration. Most configurations typically include

only one network.

To start the cluster configuration

wizard, refer to section 3.2.

Switch to “Advanced configuration”

to edit the XML if needed.

<cluster>

 <lans>

 <lan name="default">

 <node name="node1"

addr="10.0.0.107"/>

 <node name="node2"

addr="10.0.0.108"/>

 </lan>

 <lan name="private">

 <node name="node1"

addr="10.1.0.107"/>

 <node name="node2"

addr="10.1.0.108"/>

 </lan>

 </lans>

</cluster>

For detail on XML configuration refer to section

12.1.

15.1.2 Mirror module configurations

The mirror.safe delivered since SafeKit 8.2.4, has been enhanced to allow the

definition of the services list using a macro called SERVICES into the module

configuration. The module scripts utilize this value to:

 Examples of module configurations

39 A2 38MC 05 297

• check that the listed services exist on the server and disable their automatic startup

at boot during module configuration

• automatically start and stop the listed services when necessary, during the module

runtime

Therefore, integrating a new application using mirror.safe is limited to:

• getting the names of the relevant services

To list all installed services on a server, use:

o the PowerShell cmdlet Get-Service in Windows

o the command systemctl list-unit-files --type=service in Linux

• determining the paths of the directories to replicate

• obtaining an unused IP address as the virtual IP

Below are examples of mirror module configurations, featuring a virtual IP address, real-

time replication, and failover.

15.1.2.1 Configuration with a virtual IP address, real-time replication, and

failover

The following configuration use only one network for the heartbeats and replication flow.

SafeKit User's Guide

298 39 A2 38MC 05

To start the module configuration

wizard, refer to section 3.3.

Switch to “Advanced configuration” to

edit the XML if needed.

<!DOCTYPE safe>

<safe>

<macro name="SERVICES" value="service1,

service2"/>

<service mode="mirror" boot="on">

 <heart>

 <heartbeat name="default">

 </heartbeat>

 </heart>

 <vip>

 <interface_list>

 <interface check="on">

 <real_interface>

 <virtual_addr addr="10.1.0.126"

where="one_side_alias" check="on"/>

 </real_interface>

 </interface>

 </interface_list>

 </vip>

 <rfs>

 <replicated dir="e:\repdir"/>

 </rfs>

 <user>

 <var name="SERVICES"

value="%SERVICES%"/>

 </user>

</service>

</safe>

For detail on XML configuration of:

• <macro> refer to section 13.1

• <service> refer to section 13.2

• <heart> refer to section 13.3

• <vip> refer to section 13.5

• <rfs> refer to section 13.6

• <user>, <var> refer to section 13.7

 Examples of module configurations

39 A2 38MC 05 299

Define the names of the services in the SERVICES macro. These services will

be automatically started and stopped by the module's scripts of SafeKit

8.2.4's mirror.safe.

15.1.2.2 Configuration of a dedicated replication network

The module is configured to use both cluster networks as defined in section 15.1.1. The

one named private is selected as the “Replication flow” for replication traffic.

To start the module configuration

wizard, refer to section 3.3.

Switch to “Advanced configuration” to

edit the XML if needed.

<!DOCTYPE safe>

<safe>

<macro name="SERVICES" value="service1,

service2"/>

<service mode="mirror" boot="on">

 <heart>

 <heartbeat name="default"/>

 <heartbeat name="private"

ident="flow"/>

 </heart>

 <vip>

 <interface_list>

 <interface check="on">

 <real_interface>

 <virtual_addr addr="10.1.0.126"

where="one_side_alias" check="on"/>

 </real_interface>

 </interface>

 </interface_list>

 </vip>

 <rfs>

 <replicated dir="e:\repdir"/>

 </rfs>

 <user>

 <var name="SERVICES"

value="%SERVICES%"/>

 </user>

</service>

</safe>

For detail on XML configuration see section

13.

15.1.3 Mirror Module scripts

Below are Windows scripts of the mirror module to start/stop services on the primary

node. For Linux, please refer to the mirror.safe delivered with the Linux package that

includes Linux scripts.

SafeKit User's Guide

300 39 A2 38MC 05

For detail on module scripts, refer to section 14.

For details on script logging (with echo, Write-Host and safekit printe commands),

refer to section 14.3.

With the mirror.safe module delivered since SafeKit 8.2.4, the user no longer needs to

modify the scripts to insert the start and stop commands for each service. Indeed, the

new module scripts use the value of SERVICES to retrieve the names of the services to be

started or stopped.

Below, we still show how to edit the scripts in case you need to adapt them for specific

needs. For example, milestone.safe requires starting App pools after the IIS service

has been started. It does not present any difficulty to adapt the generic script to insert

this operation.

15.1.3.1 start_prim script

start_prim script is called when the mirror module is starting as primary (manual or

automatic start after stopstart or wait) or restarting on a primary node (restart). It

must contain the start of the services integrated into the module. The services run on

only on the primary node.

…

Start and check of services defined in SERVICES

Write-Host "--- Start and check of SERVICES

$($servicesArray -join ', ')"

foreach ($serviceName in $servicesArray) {

 # Start the service

 …

 # Check the service status

}

With the mirror.safe module delivered since SafeKit 8.2.4, the script stops

the module if a service start fails or does not reach a started status. This

behavior can be changed by commenting out the call to the function

Stop_Module_And_Exit.

15.1.3.2 stop_prim script

stop_prim script is called when the module is stopping (stop, stopstart or wait) or

restarting on a primary node (restart). It must contain the stop of the services

integrated into the module.

 Examples of module configurations

39 A2 38MC 05 301

…

$gracefulStop = ($args[0] -ne "force")

…

Stop and check of services

if ($gracefulStop) {

 Write-Host "--- Stop and check of SERVICES

$($servicesArray -join ', ')"

 foreach ($serviceName in $servicesArray) {

 # Graceful stop

 # Stop the service

 …

 }

}

…

15.2 Farm module example with farm.safe

Below is the configuration of the farm module, farm.safe.

To test a mirror module, refer to section 4.3.

The following description is for Windows. For Linux, please refer to

farm.safe delivered with the Linux package that includes Linux

configuration and scripts.

15.2.1 Cluster configuration with three nodes

The cluster configuration includes a single network, named default, and three nodes to

demonstrate advanced load balancing configuration. Most cluster configurations typically

include only two nodes.

Only a farm module with load balancing and no replication can be configured

on more than 2 nodes. A mirror module with replication can be configured

only on two nodes.

SafeKit User's Guide

302 39 A2 38MC 05

To start the cluster configuration

wizard, refer to section 3.2.

Switch to “Advanced

configuration” to edit the XML if

needed.

<cluster>

 <lans>

 <lan name="default">

 <node name="node1" addr="10.0.0.107"/>

 <node name="node2" addr="10.0.0.108"/>

 <node name="node3" addr="10.0.0.106"/>

 </lan>

 </lans>

</cluster>

For detail on XML configuration refer to section

12.1.

15.2.2 Farm module configurations

The farm.safe delivered since SafeKit 8.2.4, has been enhanced to allow the definition

of the services list using a macro called SERVICES into the module configuration. The

module scripts utilize this value to:

• check that the listed services exist on the server and disable their automatic startup

at boot during module configuration

• automatically start and stop the listed services when necessary, during the module

runtime

Therefore, integrating a new application using farm.safe is limited to:

• getting the names of the relevant services

To list all installed services on a server, use:

o the PowerShell cmdlet Get-Service in Windows

o the command systemctl list-unit-files --type=service in Linux

• obtaining an unused IP address as the virtual IP

• determining the load-balancing rules

Below are examples of the farm module configurations, featuring a virtual IP address,

load-balancing rules, and failover.

 Examples of module configurations

39 A2 38MC 05 303

15.2.2.1 Configuration with a virtual IP address, load-balancing rule, and

failover

The defined load-balancing rule allows you to view the load distribution among the nodes

by accessing the SafeKit web page http://host:9010/safekit/mosaic.html.

To start the module configuration

wizard, refer to section 3.3.

<!DOCTYPE safe>

<macro name="SERVICES" value="service1,

service2"/>

<safe>

 <service mode="farm" boot="on">

 <farm>

 <lan name="default"></lan>

 </farm>

 <vip>

 <interface_list>

 <interface check="on">

 <virtual_interface

type="vmac_directed">

 <virtual_addr addr="10.1.0.126"

where="alias" check="on"/>

 </virtual_interface>

 </interface>

 </interface_list>

 <loadbalancing_list>

 <group name="FarmProto">

 <rule port="9010" proto="tcp"

filter="on_port"/>

 </group>

 </loadbalancing_list>

 </vip>

 <user>

 <var name="SERVICES"

value="%SERVICES%"/>

 </user>

 </service>

</safe>

For detail on XML configuration of:

• <macro> refer to section 13.1

• <service> refer to section 13.2

• <farm> refer to section 13.4

• <vip> refer to section 13.5

• <user>, <var> refer to section 13.7

http://host:9010/safekit/mosaic.html

SafeKit User's Guide

304 39 A2 38MC 05

Switch to “Advanced configuration” to

edit the XML if needed.

Other examples of load balancing rules configuration are described in the following.

15.2.2.2 Configuration of TCP load-balancing rules

Below is the load balancing configuration for accessing the virtual IP using the TCP

protocol on the specified ports:

• 80 (HTTP), 443 (HTTPS), 8080 (HTTP proxy)

With HTTP and HTTPS, network load balancing is set on the client IP source address

and not on the client TCP source port, to ensure that the same client is always

connected to the same web server over several TCP connections (stateful versus

stateless servers: see section 1.3.3).

• 389 (LDAP) et 23 (Telnet)

<!DOCTYPE safe>

<safe>

 <macro name="SERVICES" value="service1,

service2"/>

 <service mode="farm" boot="on">

 <farm>

 <lan name="default"></lan>

 </farm>

 <vip>

 <interface_list>

 <interface check="on">

 <virtual_interface

type="vmac_directed">

 <virtual_addr addr="10.1.0.127"

where="alias" check="on"/>

 </virtual_interface>

 </interface>

 </interface_list>

 <loadbalancing_list>

 <group name="FarmProto">

 <rule port="23" proto="tcp"

filter="on_port"/>

 <rule port="80" proto="tcp"

filter="on_addr"/>

 <rule port="443" proto="tcp"

filter="on_addr"/>

 <rule port="8080" proto="tcp"

filter="on_addr"/>

 <rule port="389" proto="tcp"

filter="on_port"/>

 </group>

 </loadbalancing_list>

 </vip>

 Examples of module configurations

39 A2 38MC 05 305

To start the module configuration

wizard, refer to section 3.3.

Switch to “Advanced configuration” to

edit the XML if needed.

 <user>

 <var name="SERVICES"

value="%SERVICES%"/>

 </user>

 </service>

</safe>

For details on <loadbalancing_list>

configuration, refer to section 13.5.6.

15.2.2.3 Configuration of UDP load-balancing rules

Below is the load balancing configuration for accessing the virtual IP using the UDP

protocol on the specified ports:

• 53 (DNS)

• 1645 (RADIUS)

With "on_ipid", the load balancing is made on the IP identifier field in the packet IP

header. The load balancing works even if the client always presents the same client IP

address and client port at input.

To start the module configuration wizard,

refer to section 3.3.

The wizard do not present on_ipid filter.

Switch to “Advanced configuration” to edit

it.

<!DOCTYPE safe>

<safe>

 <macro name="SERVICES"

value="service1, service2"/>

 <service mode="farm" boot="on">

 <farm>

 <lan name="default"></lan>

 </farm>

 <vip>

 <interface_list>

 <interface check="on">

 <virtual_interface

type="vmac_directed">

 <virtual_addr addr="10.1.0.127"

where="alias" check="on"/>

 </virtual_interface>

 </interface>

 </interface_list>

 <loadbalancing_list>

 <group name="FarmProto">

 <rule port="53" proto="udp"

filter="on_ipid" />

 <rule port="1645" proto="udp"

filter="on_ipid" />

 </group>

 </loadbalancing_list>

 </vip>

 <user>

SafeKit User's Guide

306 39 A2 38MC 05

 <var name="SERVICES"

value="%SERVICES%"/>

 </user>

 </service>

</safe>

For details on <loadbalancing_list>

configuration, refer to section 13.5.6.

15.2.2.4 Configuration of advanced load-balancing rules

With the following configuration example, you are defining a farm of 3 nodes with a

priority for HTTP traffic on the 1st node, HTTPS on the 2nd node and proxy HTTP on the 3rd

node.

To start the module configuration

wizard, refer to section 3.3.

The wizard do not present details on

the load-balancing groups. Switch to

“Advanced configuration” to edit them.

<!DOCTYPE safe>

<safe>

 <macro name="SERVICES" value="service1,

service2"/>

 <service mode="farm" boot="on">

 <farm>

 <lan name="default"></lan>

 </farm>

 <vip>

 <interface_list>

 <interface check="on">

 <virtual_interface

type="vmac_directed">

 <virtual_addr addr="10.1.0.127"

where="alias" check="on"/>

 </virtual_interface>

 </interface>

 </interface_list>

 <loadbalancing_list>

 <group name="http_service">

 <cluster>

 <host name="node1" power="3"/>

 <host name="node2" power="1"/>

 <host name="node3" power="1"/>

 </cluster>

 <rule port="80" proto="tcp"

filter="on_addr"/>

 </group>

 <group name="https_service">

 <cluster>

 <host name="node1" power="1"/>

 <host name="node2" power="3"/>

 <host name="node3" power="1"/>

 </cluster>

 <rule port="443" proto="tcp"

filter="on_addr"/>

 </group>

 Examples of module configurations

39 A2 38MC 05 307

 <group name="httpproxy_service">

 <cluster>

 <host name="node1" power="1"/>

 <host name="node2" power="1"/>

 <host name="node3" power="3"/>

 </cluster>

 <rule port="8080" proto="tcp"

filter="on_addr"/>

 </group>

 </loadbalancing_list>

 </vip>

 <user>

 <var name="SERVICES"

value="%SERVICES%"/>

 </user>

 </service>

</safe>

For details on <loadbalancing_list>

configuration, refer to section 13.5.6.

15.2.3 Farm module scripts

Below are Windows scripts for a farm module to start/stop services on all nodes. For

Linux, please refer to the farm.safe delivered with the Linux package that includes Linux

scripts.

For detail on module scripts, refer to section 14.

For details on script logging (with echo, Write-Host and safekit printe commands),

refer to section 14.3.

With the farm.safe module delivered since SafeKit 8.2.4, the user no longer needs to

modify the scripts to insert the start and stop commands for each service. Indeed, the

new module scripts use the value of SERVICES to retrieve the names of the services to be

started or stopped.

Below, we still show how to edit the scripts in case you need to adapt them for specific

needs. For example, milestone.safe requires starting App pools after the IIS service

has been started. It does not present any difficulty to adapt the generic script to insert

this operation.

15.2.3.1 start_both script

start_both script is called when the farm module is starting (manual or automatic start

after stopstart or wait) and restarting (restart). It must contain the start of the

application integrated into the module. The application runs on all nodes.

SafeKit User's Guide

308 39 A2 38MC 05

…

Start and check of services defined in SERVICES

Write-Host "--- Start and check of SERVICES

$($servicesArray -join ', ')"

foreach ($serviceName in $servicesArray) {

 # Start the service

 …

 # Check the service status

}

With the farm.safe module delivered since SafeKit 8.2.4, the script stops

the module if a service start fails or does not reach a started status. This

behavior can be changed by commenting out the call to the function

Stop_Module_And_Exit.

15.2.3.2 stop_both script

stop_both script is called when the farm module is stopping (stop, stopstart or wait

exit) or restarting (restart). It must contain the stop of the application integrated into

the module.

…

$gracefulStop = ($args[0] -ne "force")

…

Stop and check of services

if ($gracefulStop) {

 Write-Host "--- Stop and check of SERVICES

$($servicesArray -join ', ')"

 foreach ($serviceName in $servicesArray) {

 # Graceful stop

 # Stop the service

 …

 }

}

…

 Examples of module configurations

39 A2 38MC 05 309

15.3 Macro and script variables example with hyperv.safe

The module hyperv.safe brings high availability to Hyper-V between two Windows

servers. It is a mirror module configuration, with a virtual IP address, real-time

replication, and failover. It is presented to demonstrate the use of macros and module

script environment variables.

15.3.1 Module configuration with macros and var

In the following example, four <macro> are configured and their values are used to define

the replicated directory path <dir> (i.e. E:\Hyper-V\Ubuntu20-1) and the environment

variables <var> for module scripts. Note that in the example, the names of the macros

and the variables are identical, which is not a requirement.

<!DOCTYPE safe>

<safe>

 <macro name="VM_PATH"

 value="E:\Hyper-V"/>

 <macro name="VM_NAME"

 value="Ubuntu20-1"/>

 <macro name="NORMAL_STOP"

 value="stop"/>

 <macro name="FORCE_STOP"

 value="stop"/>

 <service mode="mirror">

 <heart>

 <heartbeat name="default" />

 </heart>

 <rfs scripts="on" acl="on"

namespacepolicy="0" allocthreshold="10">

 <replicated

dir="%VM_PATH%\%VM_NAME%">

 </replicated>

 </rfs>

 <user>

 <var name="VM_PATH"

 value="%VM_PATH%\%VM_NAME%"/>

 <var name="VM_NAME"

 value="%VM_NAME%"/>

 <var name="NORMAL_STOP"

 value="%NORMAL_STOP%"/>

 <var name="FORCE_STOP"

 value="%FORCE_STOP%"/>

 </user>

 </service>

</safe>

For detail on XML configuration of:

• <macro> refer to section 13.1.

• <user>, <var> refer to section 13.7.

SafeKit User's Guide

310 39 A2 38MC 05

To start the module configuration

wizard, refer to section 3.3.

The wizard do not present the user

configuration. Switch to “Advanced

configuration” to edit it.

15.3.2 Module scripts with var

Below, the start_prim.ps1 accesses the environment variables defined at the time the

script is executed:

• the SafeKit environment variables SAFE and SAFEUSERVAR

• the module environment variables VM_PATH, VM_NAME… defined in the <var>

sections of <user>

For details, refer to section 14.2.

$safe = (Get-Item env:SAFE).Value

$suv = (Get-Item env:SAFEUSERVAR).Value

$vmname = (Get-Item env:VM_NAME).Value

$vmpath = (Get-Item env:VM_PATH).Value

…

15.4 Process monitoring example with softerrd.safe

The module softerrd.safe is a demonstration mirror module for process monitoring.

This feature is also available in a farm module.

The tests consist of terminating the monitored processes (i.e., mybin, myotherbin, or

myappli) using the safekit kill command.

To test the process/service monitoring, refer to section 4.4.1.

The following description is for Windows. For Linux, please refer to

softerrd.safe delivered with the Linux package that includes Linux

configuration and scripts.

15.4.1 Module configuration with process monitoring

Detecting the shutdown of:

• mybin.exe causes the module to restart (action="restart"). Its monitoring

enabled/disabled after/before the execution of start_prim/stop_prim

(class="prim").

 Examples of module configurations

39 A2 38MC 05 311

• myotherbin.exe causes a stop of the module (action="stop"). Its monitoring

enabled/disabled after/before the execution of start_second/stop_second

(class="second").

• myappli.exe causes the execution of a special handler restart_myappli.cmd

(action="restart_myappli") located into the bin directory of the module. The

monitoring of myappli is manually enabled/disabled in the module scripts

after/before its launch/stop (e.g. class="myappli"). Refer to scripts detailed in

section 15.4.2.

This configuration allows for the individual restart of the myappli process without

having to completely restart the application integrated in start_prim/stop_prim.

The actions restart and stopstart automatically increment the maxloop counter to limit

the number of automatic actions in the event of persistent errors. By default, the module

is stopped on the 4th error detection within 24 hours (see maxloop and loop_interval

in section 13.2.3).

If the action involves executing a special script, this script must manually manage the

maxloop counter (i.e., restart_myappli.cmd).

SafeKit User's Guide

312 39 A2 38MC 05

To start the module configuration

wizard, refer to section 3.3.

The wizard do not present details on

class associated to process. Switch to

“Advanced configuration” to edit them.

<!DOCTYPE safe>

<safe>

 <service mode="mirror">

 <heart>

 <heartbeat name="default">

 </heartbeat>

 </heart>

 <errd>

 <proc name="mybin.exe"

 action="restart"

 class="prim"/>

 <proc name="myotherbin.exe"

 action="stop"

 class="second"/>

 <proc name="myappli.exe"

 action="restart_myappli"

 class="myappli"/>

 </errd>

 <user>

 </user>

 </service>

</safe>

For details on XML configuration of <errd>,

see section 13.9.

15.4.2 Advanced configuration of module scripts

The module monitors the presence of the following processes:

• mybin and myappli started/stopped on the primary node with start_prim/stop_prim

• myotherbin started/stopped on the secondary node with start_second/stop_second

 Examples of module configurations

39 A2 38MC 05 313

@echo off

echo "Running start_prim %*"

%SAFE%\safekit printi "start mybin"

start %SAFEUSERBIN%\mybin.exe 10000000

%SAFE%\safekit printi "start myappli"

start %SAFEUSERBIN%\myappli.exe 10000000

%SAFE%\safekit errd enable myappli

Note the call to safekit errd enable myappli to start

monitoring the process with class="myappli" once this

process is launched.

Refer to section 13.9.4 for the description of this

command.

@echo off

echo "Running stop_prim %*"

%SAFE%\safekit printi "stop mybin"

%SAFE%\safekit kill -level="terminate" -

name="mybin.exe"

%SAFE%\safekit printi "stop myappli"

%SAFE%\safekit errd disable myappli

%SAFE%\safekit kill -level="terminate" -

name="restart_myappli.cmd"

%SAFE%\safekit kill -level="terminate" -

name="myappli.exe"

:end

Note the call to safekit errd disable myappli to stop

monitoring the process with class="myappli", before

terminating this process.

The specific handler restart_myappli.cmd is editable in "Advanced Configuration". This

script increments the maxloop counter and restarts the myappli process.

SafeKit User's Guide

314 39 A2 38MC 05

Switch to “Advanced

configuration” to list and

edit all scripts.

@echo off

%SAFE%\safekit printi "restart_myappli"

rem first disable monitoring of the application

%SAFE%\safekit errd disable myappli

rem increment loop counter

%SAFE%\safekit incloop -i "restart_myappli"

if %errorlevel% == 0 goto next

rem max loop reached

%SAFE%\safekit stop -i "restart_myappli"

%SAFEBIN%\exitcode 0

:next

rem max loop not reached : go on restarting the

application

%SAFE%\safekit printi "Restart myappli"

%SAFE%\safekit kill -level="terminate" -

name="myappli.exe"

start %SAFEUSERBIN%\myappli.exe 10000000

rem finally, enable monitoring of the application

%SAFE%\safekit errd enable myappli

%SAFEBIN%\exitcode 0

Note the increment of the loop counter with safekit

incloop -i "restart_myappli" and the stopping of the

module when maxloop is reached.

Refer to section 14.5.3 for the description of this

command.

15.5 TCP checker example

Below is an example of the configuration of a TCP checker in a farm module. This checker

tests the connection to the local web service on port 80. If the connection fails, the

checker sets the resource tcp.Apache_80 to down. The associated failover rule, named

t_Apache_80, executes a restart of the module when the resource goes down.

• The resource name prefix is tcp.

• The failover rule name prefix is t_

• The suffix is the value of the attribute ident

For a description of checkers, refer to section 13.10.3.

To test the TCP checker, refer to section 4.4.2 and section 4.4.3.

 Examples of module configurations

39 A2 38MC 05 315

To start the module configuration

wizard, refer to section 3.3.

Switch to “Advanced configuration” to

edit the XML if needed.

<!DOCTYPE safe>

<safe>

 <service mode="farm" boot="on">

 <farm>

 <lan name="default"></lan>

 </farm>

 <vip>

 <interface_list>

 <interface check="on">

 <virtual_interface

type="vmac_directed">

 <virtual_addr addr="10.1.0.127"

where="alias" check="on"/>

 </virtual_interface>

 </interface>

 </interface_list>

 <loadbalancing_list>

 <group name="FarmProto">

 <rule port="80" proto="tcp"

filter="on_addr"/>

 </group>

 </loadbalancing_list>

 </vip>

 <user></user>

 <check>

 <tcp ident="Apache_80" when="both"

action="restart">

 <to addr="localhost" port="80"/>

 </tcp>

 </check>

 </service>

</safe>

For details on XML configuration of <tcp>,

see section 13.11.

15.6 Ping checker example

Below is an example of the configuration of a ping checker in a mirror module. This

checker tests that 192.168.1.1 responds to the ping. If the ping fails, the checker sets

the resource ping.router to down. The associated failover rule, named p_router,

executes a wait on the module when the resource goes down.

• The resource name prefix is ping.

• The failover rule name prefix is p_

• The suffix is the value of the attribute ident

SafeKit User's Guide

316 39 A2 38MC 05

For a description of checkers, refer to section 13.10.3.

To test the ping checker, refer to section 4.4.5.

To start the module configuration

wizard, refer to section 3.3.

Switch to “Advanced configuration” to

edit the XML if needed.

<!DOCTYPE safe>

<safe>

<service mode="mirror" boot="on">

 <heart>

 <heartbeat name="default">

 </heartbeat>

 </heart>

 <vip>

 <interface_list>

 <interface check="on">

 <real_interface>

 <virtual_addr addr="10.1.0.126"

where="one_side_alias" check="on"/>

 </real_interface>

 </interface>

 </interface_list>

 </vip>

 <rfs>

 <replicated dir="e:\repdir"/>

 </rfs>

 <user></user>

 <check>

 <ping ident="router" when="pre"

action="wait">

 <to addr="192.168.1.1"/>

 </ping>

 </check>

</service>

</safe>

For details on XML configuration of <ping>,

see section 13.12.

 Examples of module configurations

39 A2 38MC 05 317

15.7 Custom checker example with customchecker.safe

The customchecker.safe module is a demonstration mirror module including a custom

checker that tests the presence of a file on the primary server. This feature is also

available in a farm module.

If the file is not present, the checker sets the resource custom.checkfile to down. The

associated failover rule, named c_checkfile, executes a restart of the module when

the resource goes down.

• The resource name prefix is custom.

• The failover rule name prefix is c_

• The suffix is the value of the attribute ident

The customchecker.safe is delivered with the SafeKit package and can be used as a

basis for writing your own checker.

For a description of checkers, refer to section 13.10.3.

To test the custom checker, refer to section 4.4.7 and section 4.4.8.

The following description is for Windows. For Linux, please refer to

customchecker.safe delivered with the Linux package that includes Linux

configuration and scripts.

15.7.1 Module configuration with custom checker

The following example is the custom checker configuration supported since SafeKit 8 with

the attribute action.

SafeKit User's Guide

318 39 A2 38MC 05

To start the module configuration

wizard, refer to section 3.3.

Switch to “Advanced configuration” to

edit the XML if needed.

<!DOCTYPE safe>

<safe>

<service mode="mirror" boot="on">

 <heart>

 <heartbeat name="default">

 </heartbeat>

 </heart>

 <vip>

 <interface_list>

 <interface check="on">

 <real_interface>

 <virtual_addr addr="10.1.0.126"

where="one_side_alias" check="on"/>

 </real_interface>

 </interface>

 </interface_list>

 </vip>

 <rfs>

 <replicated dir="e:\repdir"/>

 </rfs>

 <user></user>

 <check>

 <custom ident="checkfile"

exec="checker.ps1"

arg="c:\safekit\checkfile" when="prim"

action="restart"/>

 </check>

</service>

</safe>

For details on XML configuration of

<custom>, see section 13.15.

The custom checker configuration for SafeKit < 8 is still supported. In previous releases,

the custom checker configuration required to define an explicit failover rule in

userconfig.xml as follow:

…

<check>

 <custom ident="checkfile" exec="checker.ps1" arg="c:\safekit\checkfile"

when="prim"/>

</check>

<failover>

 <![CDATA[

 c_checkfile: if(custom.checkfile == down) then restart();

]]>

</failover>

 Examples of module configurations

39 A2 38MC 05 319

…

Attribute action is not defined and its value, by default, is noaction.

The module configuration wizard do not present the failover section. You must switch

to “Advanced configuration” to edit it.

15.7.2 Advanced configuration of module checker script

The custom checker is an infinite loop that performs a test and assigns the associated

resource as up or down based on the test result.

The checker is called with at least 2 arguments:

• The 1st argument is the module name

• The 2nd is the name of the resource to be assigned

If the <custom> configuration contains the arg attribute, its value is passed as the next

arguments.

In the following example, the checker is written with the following precautions:

• The resource is only assigned if its value has changed

• When the resource is down, the checker consolidates this state (grace times)

before assigning it. This can help to avoid false error detections.

Switch to “Advanced

configuration” to list

and edit all scripts.

Custom checker template that tests if a file exists

param([Parameter(Mandatory = $true, ValueFromPipeLine =

$true, position=1)][String]$ModName,

 [Parameter(Mandatory = $true, ValueFromPipeLine =

$true, position=2)][String]$RName,

 [Parameter(Mandatory = $true, ValueFromPipeLine =

$true, position=3)][String]$Arg1Value,

 [Parameter(Mandatory = $false, ValueFromPipeLine

= $false, position=4)][String]$Grace="2",

 [Parameter(Mandatory = $false, ValueFromPipeLine

= $false, position=5)][String] $Period="5"

)

return up on success | down on failure

Function test([String]$Arg1Value)

{

 $res="down"

 if (Test-Path "$Arg1Value"){

 $res="up"

 }

 return $res

}

$customchecker=$MyInvocation.MyCommand.Name

$safekit="$env:SAFE/safekit.exe"

$gracecount=0

$prevrstate="unknown"

wait a little

Start-Sleep $Period

SafeKit User's Guide

320 39 A2 38MC 05

while ($true){

 Start-Sleep $Period

 $rstate = test($Arg1Value)

 if($rstate -eq "down"){

 $gracecount+=1

 }else{

 $gracecount = 0

 if($prevrstate -ne $rstate){

 & $safekit set -r "$RName" -v $rstate -i

$customchecker -m $ModName

 $prevrstate = $rstate

 }

 }

 if($gracecount -ge $Grace){

 if($prevrstate -ne $rstate){

 & $safekit set -r "$RName" -v $rstate -i

$customchecker -m $ModName

 $prevrstate = $rstate

 }

 $gracecount = 0

 }

}

Note the call to safekit set -r custom.checkfile -v up

(or down) to assign the resource value.

Refer to section 9.3 for the description of this command.

15.8 Split-brain checker example

Below is an example of the split-brain checker configuration in a mirror module. This

feature is not also available in a farm module

This checker tests if the address 192.168.1.1 responds to the ping. If the ping fails, the

checker sets the splitbrain.witness resource to down.

In case of network isolation between nodes, the split-brain checker assigns the

splitbrain.uptodate resource as up or down according to access to the witness. The

static and predefined failover rule, named splitbrain_failure, executes a wait on the

module when this resource goes down. This ensures that only the node with access to the

witness becomes ALONE, while the other is stuck in the WAIT state.

• The resource name prefix is splitbrain.

• The suffix is the value of the attribute ident

• The failover rule is static and predefined, and tests the other resource

managed by the split-brain checker, splitbrain.uptodate. Its name

is splitbrain_failure.

 Examples of module configurations

39 A2 38MC 05 321

To start the module configuration

wizard, refer to section 3.3.

Switch to “Advanced configuration” to

edit the XML if needed.

<!DOCTYPE safe>

<safe>

<service mode="mirror" boot="on">

 <heart>

 <heartbeat name="default">

 </heartbeat>

 </heart>

 <vip>

 <interface_list>

 <interface check="on">

 <real_interface>

 <virtual_addr addr="10.1.0.126"

where="one_side_alias" check="on"/>

 </real_interface>

 </interface>

 </interface_list>

 </vip>

 <rfs>

 <replicated dir="e:\repdir"/>

 </rfs>

 <user></user>

 <check>

 <check>

 <splitbrain ident="witness"

exec="ping" arg="10.1.0.112"/>

 </check>

 </check>

</service>

</safe>

For details on XML configuration of

<splitbrain>, see section 13.17.

15.9 Module checker examples

15.9.1 Example of a farm module depending on a mirror module

Below is an example of the configuration of a module checker in a farm module. This

checker tests that the module name mirror with virtual IP address 10.0.0.129 is ready

(ALONE or PRIM). If it is not ready, the checker sets the resource

module.mirror_10.0.0.129 to down. The static and predefined failover rule, named

module_failure, executes a wait on the farm module when this resource goes down.

SafeKit User's Guide

322 39 A2 38MC 05

• The resource name prefix is module.

• The suffix is the value of the attribute name and addr

• The failover rule is static and predefined, and is named module_failure

For a description of checkers, refer to section 13.10.3.

To test the module checker, refer to section 4.4.6.

To start the module configuration

wizard, refer to section 3.3.

The wizard do not present the module

checker. Switch to “Advanced

configuration” to configure it.

<!DOCTYPE safe>

<safe>

 <service mode="farm" boot="on">

 <farm>

 <lan name="default"></lan>

 </farm>

 <vip>

 <interface_list>

 <interface check="on">

 <virtual_interface

type="vmac_directed">

 <virtual_addr addr="10.1.0.127"

where="alias" check="on"/>

 </virtual_interface>

 </interface>

 </interface_list>

 <loadbalancing_list>

 <group name="FarmProto">

 <rule port="9010" proto="tcp"

filter="on_port"/>

 </group>

 </loadbalancing_list>

 </vip>

 <user></user>

 <check>

 <module name="mirror">

 <to addr="10.0.0.129" port="9010"/>

 </module>

 </check>

 </service>

</safe>

For details on XML configuration of <module>,

see section 13.16.

 Examples of module configurations

39 A2 38MC 05 323

Note that the module dependency can be used when you deploy farm and

mirror modules on the same SafeKit cluster or when you deploy farm and

mirror modules on two different clusters. In this case, the password set to

initialize the web service must be identical on both SafeKit clusters.

15.9.2 Example with leader.safe and follower.safe

The two demonstration modules leader.safe and follower.safe delivered with SafeKit

allow you to configure one or more follower modules whose startup depends on the

startup of the main mirror module, named leader.

For example, the main services of an application with replicated directories can be

configured in the leader module, and some ancillary services of this application can be

started in a follower module if you consider that its failure should only trigger its own

restart; The other follower modules and the leader module are not impacted, which

ensures service continuity for these modules.

The leader module is configured for a mirror architecture and includes the start and stop

of the follower modules.

Each follower module is configured for a light architecture with module scripts and error

detectors. The follower modules depend on the leader failover with the following module

checker.

follower/conf/userconfig.xml - see section 13

<check>

 <module name="leader"/>

</check>

This is a shortcut for:

<module name="leader">

 <to addr="127.0.0.1" port="9010"/>

</module>

For details on XML configuration of <module>, see section 13.16.

If you change the listening port for the SafeKit web service (as described in

section 10.8), replace the short configuration with the full one and change

the port value.

15.10 Interface checker example

Below is the example of an interface checker configuration automatically generated when

<interface check="on"> is set. For details, refer to section 13.5.

In the userconfig.xml of the mirror module for instance, the virtual IP address is

defined as follows:

<vip>

 <interface_list>

 <interface check="on">

 <real_interface>

 <virtual_addr addr="10.0.0.129" where="one_side_alias" check="on"/>

 </real_interface>

 </interface>

 </interface_list>

</vip>

SafeKit User's Guide

324 39 A2 38MC 05

When configuring the module, SafeKit generates the corresponding configuration for the

interface checker. For the example, the automatically generated configuration is:

<check>

 <intf when="pre" ident="10.0.0.0">

 <to local_addr="10.0.0.107"/>

 </intf>

</check>

Where the value of ident is the network corresponding to the virtual IP address; the

value of local_addr is the first IP address of the network corresponding to the virtual

address.

The checker checks that the Ethernet cable is connected on this interface. If the cable is

disconnected, the checker set the associated resource intf.10.0.0.0 to down. The

static and predefined failover rule, named interface_failure, executes a wait on the

module when this resource goes down.

• The resource name prefix is intf.

• The suffix is the value of the attribute ident

• The failover rule is static and predefined, and is named
interface_failure

For configuration details of interface checker, see section 13.13.

For a description of checkers, refer to section 13.10.3.

To test the interface checker, refer to section 4.4.4.

15.11 IP checker example

Below is the example of an IP checker configuration automatically generated when

<virtual_addr … check="on"> is set. For details, refer to section 13.5.

In the userconfig.xml of the mirror module for instance, the virtual IP address is

defined as follows:

<vip>

 <interface_list>

 <interface check="on">

 <real_interface>

 <virtual_addr addr="10.0.0.129" where="one_side_alias" check="on"/>

 </real_interface>

 </interface>

 </interface_list>

</vip>

When configuring the module, SafeKit generates the corresponding configuration for the

IP checker. For the example, the automatically generated configuration is:

<check>

 <ip ident="10.0.0.129" when="prim">

 <to addr="10.0.0.129"/>

 </ip>

</check>

Where the value of ident and addr are the the virtual IP address ; the value of when is

prim for a mirror module, and both for a farm module.

 Examples of module configurations

39 A2 38MC 05 325

The IP checker checks that the IP address is configured locally. If the IP address is not

configured, the checker set the associated resource ip.10.0.0.129 to down. The static

and predefined failover rule, named ip_failure, executes a stopstart on the module

when this resource goes down.

• The resource name prefix is ip.

• The suffix is the value of the attribute ident

• The failover rule is static and predefined, and is named ip_failure

For configuration details of IP checker, see section 13.14.

For a description of checkers, refer to section 13.10.3.

15.12 Virtual hostname example with vhost.safe

The demonstration module vhost.safe shows how to set a virtual hostname in a mirror

module. This feature is also available in a farm module.

The following description is for Windows. For Linux, please refer to

vhost.safe delivered with the Linux package that includes Linux

configuration and scripts.

In Windows, the vhost.safe delivered since SafeKit 8.2.4 has been enhanced to allow

testing the setup of the virtual hostname for a service. It relies on an HTTP service called

testhostname that is created/deleted during the module configuration/deconfiguration.

This service is started/stopped by the module scripts and listens on port 9999. The

http://localhost:9999/hostname endpoint returns the value of the hostname as seen by

the testhostname service, which is the virtual hostname when the module is primary.

15.12.1 Module configuration with a virtual hostname

In the following example, one <macro> is configured and its value is used to define the

virtual hostname.

http://localhost:9999/hostname

SafeKit User's Guide

326 39 A2 38MC 05

To start the module configuration

wizard, refer to section 3.3.

The wizard do not present the vhost.

Switch to “Advanced configuration” to

edit it.

<!DOCTYPE safe>

<safe>

<macro name="virtualname"

value="virtualsrv"/>

<service mode="mirror" boot="on">

 <heart>

 <heartbeat name="default">

 </heartbeat>

 </heart>

 <vip>

 <interface_list>

 <interface check="on">

 <real_interface>

 <virtual_addr addr="10.1.0.126"

where="one_side_alias" check="on"/>

 </real_interface>

 </interface>

 </interface_list>

 </vip>

 <rfs>

 <replicated dir="e:\repdir"/>

 </rfs>

 <user></user>

 <vhost>

 <virtualhostname name="%virtualname%"

envfile="vhostenv.cmd"/>

 </vhost>

</service>

</safe>

For details on XML configuration of <vhost>,

see section 13.8.

15.12.2 Module scripts with a virtual hostname

In addition to the module configuration, special commands must be executed in the

module scripts.

For details on script logging (with echo and safekit printe commands), refer to section

14.3.

 Examples of module configurations

39 A2 38MC 05 327

15.12.2.1 start_prim script

The script runs commands to set the virtual hostname in the script environment, as well

as in the Windows service environment.

@echo off

echo "Running start_prim %*"

rem Set virtual hostname

CALL "%SAFEUSERBIN%\vhostenv.cmd"

rem Next commands use the virtual hostname

FOR /F %%x IN ('hostname') DO SET servername=%%x

echo "hostname is "%servername%

"%SAFE%\private\bin\vhostservice" testhostname

set res=0

net start testhostname

set res=%errorlevel%

if %res% == 0 goto end

:stop

"%SAFE%\safekit" printe "start_prim failed"

rem uncomment to stop the module when critical

rem "%SAFE%\safekit" stop -i "start_prim"

:end

For safekit command description, refer to section 9.

15.12.2.2 stop_prim script

The script runs commands to reset the virtual hostname in the script environment, as

well as in the Windows service environment.

SafeKit User's Guide

328 39 A2 38MC 05

@echo off

echo "Running stop_prim %*"

rem Reset virtual hostname

CALL "%SAFEUSERBIN%\vhostenv.cmd"

rem Next commands use the real hostname

FOR /F %%x IN ('hostname') DO SET servername=%%x

echo "hostname is "%servername%

set res=0

rem default: no action on forcestop

if "%1" == "force" goto end

net stop testhostname

set res=%errorlevel%

rem If necessary, wait for the stop of the services

rem "%SAFEBIN%\sleep" 10

if %res% == 0 goto end

"%SAFE%\safekit" printe "stop_prim failed"

:end

"%SAFE%\private\bin\vhostservice" testhostname

For safekit command description, refer to section 9.

39 A2 38MC 05 329

16. SafeKit cluster in the cloud

 Section 16.1 “SafeKit cluster in Amazon AWS”

 Section 16.2 “SafeKit cluster in Microsoft Azure”

 Section 16.3 “SafeKit cluster in Google GCP”

You can install, configure, and administer SafeKit modules that run on virtual servers in

the cloud instead of on-premises physical servers. This requires a minimum of cloud

and/or server settings, especially to implement the virtual IP address.

16.1 SafeKit cluster in Amazon AWS

In the following, we suppose that you are familiar with:

• Amazon Elastic Compute Cloud (Amazon EC2) that offers computing capacity in

the Amazon Web Services (AWS) cloud. For more information about the features

of Amazon EC2, see the Amazon EC2 product page.

• AWS CloudFormation that helps deploying instances and applications on Amazon

EC2. It permits to save a lot of time and effort so that you can spend less time

managing EC2 resources and more time focusing on your applications that run in

AWS.

Before implementing a SafeKit module, the administrator must :

1. Create instances (2 for a mirror module)

2. Make settings for AWS, instances, and SafeKit.

3. Then, apply specific settings for implementing your SafeKit module.

AWS settings

You must set AWS to:

• associate public addresses to each instance if you want to administer them with

the SafeKit web console from the internet

• configure the security groups associated with network(s) to enable the

communications of the SafeKit framework and the SafeKit web console. The ports

to open are described in section 10.3.3.2

• use a high-bandwidth, low-latency network if real-time replication is used in a

mirror module

Virtual machine settings

In each instance, you must also:

• install the SafeKit package

• apply the HTTPS configuration to secure the SafeKit web console (described in

section 11)

SafeKit settings

https://aws.amazon.com/ec2

SafeKit User's Guide

330 39 A2 38MC 05

Finally, you must enter the SafeKit cluster configuration and apply it to all nodes (for

details on cluster configuration, see section 12). For example, the SafeKit cluster

configuration file would be:

<cluster>

<lans>

 <lan name="default">

 <node name="Server1" addr="10.0.11.10"/>

 <node name="Server2" addr="10.0.12.10"/>

 </lan>

</lans>

</cluster>

The default lan is used for SafeKit framework communications between cluster nodes.

16.1.1 Mirror cluster in AWS

Mirror module features are operational in the AWS cloud (real-time file replication,

failover, process death detection, checkers, …), except the virtual IP address failover.

Anyway, you can set up a SafeKit mirror module on the cluster and use the Elastic load

balancing provided by AWS (see Elastic load balancing products in AWS) in such way that

all the traffic is routed only to the primary node. An IP address and/or DNS name is

associated with the load balancer that plays the role of the virtual IP.

You must configure yourself the AWS load balancer and the security group.

For the load balancer, you must:

• specify the rules for your application

• set the SafeKit cluster nodes in the target group

• configure the health check. It tests whether the instance is in a healthy state or

an unhealthy state.

The load-balancer routes the traffic only to healthy instances. It resumes routing

requests to the instance when this one has been restored to a healthy state.

SafeKit provides a health checker for SafeKit modules. For this, configure it in the load

balancer with:

https://aws.amazon.com/elasticloadbalancing/

 SafeKit cluster in the cloud

39 A2 38MC 05 331

• HTTP protocol

• port 9010, the SafeKit web service port

• URL /var/modules/AM/ready.txt, where AM is the module name

In a mirror module, the health checker:

• returns OK, that means that the instance is healthy, when the module state is

PRIM (Ready) or ALONE (Ready)

• returns NOT FOUND, that means that the instance is out of service, in all other

states

The AWS network security group must be at least configured to enable communications

for the following protocols and ports:

• UDP - 4800 for the safeadmin service (between SafeKit cluster nodes)

• UDP - 8888 for the module heartbeat (between SafeKit cluster nodes)

• TCP - 5600 for the module real time file replication (between SafeKit nodes)

• TCP - 9010 for the load-balancer health check and the SafeKit web console in

HTTP

• TCP - 9453 for the SafeKit web console in HTTPS

• TCP - 9001 for configuring the SafeKit web console for HTTPS

The module’s port value depends on the module id (for details, see section

10.3.3.2).The previous values are the one for the first module installed on

the node.

16.1.2 Farm cluster in AWS

Most farm module features are operational in the AWS cloud (process death detection,

checkers), except the virtual IP address with load balancing . Anyway, you can set up a

SafeKit farm module on the cluster and use the Elastic load balancing provided by AWS

(see Elastic load balancing products in AWS). An IP address and/or DNS name is

associated with the load balancer that plays the role of the virtual IP.

https://aws.amazon.com/elasticloadbalancing/

SafeKit User's Guide

332 39 A2 38MC 05

You must configure yourself the AWS load balancer and the security group.

For the load balancer, you must:

• specify the rules for your application

• set the SafeKit cluster nodes in the target group

• configure the health check. These tests whether the instance is in a healthy

state or an unhealthy state.

The load-balancer routes the traffic only to healthy instances. It resumes routing

requests to the instance when this one has been restored to a healthy state.

SafeKit provides a health check for SafeKit modules. For this, configure it in the load

balancer with:

• HTTP protocol

• port 9010, the SafeKit web service port

• URL /var/modules/AM/ready.txt, where AM is the module name

In a farm module, the health check:

• returns OK, that means that the instance is healthy, when the module state UP

(Ready)

• returns NOT FOUND, that means that the instance is out of service, in all other

states

The AWS network security group must be at least configured to enable communications

for the following protocols and ports:

• UDP - 4800 for the safeadmin service (between SafeKit cluster nodes)

• TCP - 9010 for the load-balancer health check and the SafeKit web console in

HTTP

• TCP - 9453 for the SafeKit web console in HTTPS

• TCP - 9001 for configuring the SafeKit web console for HTTPS

16.2 SafeKit cluster in Microsoft Azure

In the following, we suppose that you are familiar with Microsoft Azure that is a cloud

computing service created by Microsoft for building, testing, deploying, and managing

applications and services through a global network of Microsoft-managed data centers.

For more information about the features and use of Azure, see the Microsoft Azure portal.

Before implementing a SafeKit module, the administrator must :

1. Create virtual machines (2 for a mirror module)

2. Make settings for Azure, virtual machines, and SafeKit.

3. Then, apply specific settings for implementing your SafeKit module.

Azure settings

You must set Azure to:

https://portal.azure.com/

 SafeKit cluster in the cloud

39 A2 38MC 05 333

• associate public IP addresses and DNS name to virtual machines if you want to

administer them with the SafeKit web console from the internet

• configure the network security group to enable the communications of the SafeKit

framework and the SafeKit web console. The ports to open are described in

section 10.3.3.2

• use a high-bandwidth, low-latency network if real-time replication is used in a

mirror module

Virtual machine settings

On each virtual machine, you must also:

• install the SafeKit package

• apply the HTTPS configuration to secure the SafeKit web console (described in

section 11)

SafeKit settings

Finally, you must enter the SafeKit cluster configuration and apply it to all nodes (for

details on cluster configuration, see section 12). For example, the SafeKit cluster

configuration file would be:

<cluster>

<lans>

 <lan name="default">

 <node name="Server1" addr="10.0.0.10"/>

 <node name="Server2" addr="10.0.0.11"/>

 </lan>

</lans>

</cluster>

The default lan is used for SafeKit framework communications between cluster nodes.

16.2.1 Mirror cluster in Azure

Mirror module features are operational in the Azure cloud (real-time file replication,

failover, process death detection, checkers, …) except the virtual IP address failover.

Anyway, you can set up a SafeKit mirror module on the cluster and use the load

balancing provided by Azure (see Load Balancer in Azure) and route request only to the

primary node. An IP is associated with the load balancer that plays the role of the virtual

IP.

https://docs.microsoft.com/azure/load-balancer/

SafeKit User's Guide

334 39 A2 38MC 05

You must configure yourself the Azure load balancer and the network security group.

For the load balancer, you must:

• specify the rules for your application

• set the SafeKit cluster nodes into the backend pool

• configure the probe. It tests whether the instance is in a healthy state or an

unhealthy state.

The load balancer routes traffic only to healthy instances. It resumes routing requests to

the instance when the instance has been restored to a healthy state.

SafeKit provides a probe for SafeKit modules. For this, configure the probe in the load

balancer with:

• HTTP protocol

• port 9010, the SafeKit web service port

• URL /var/modules/AM/ready.txt, where AM is the module name

In a mirror module, the probe:

• returns OK, that means that the instance is healthy, when the module state is

PRIM (Ready) or ALONE (Ready)

• returns NOT FOUND, that means that the instance is out of service, in all other

states

The Azure network security group must be at least configured to enable communications

for the following protocols and ports:

• UDP - 4800 for the safeadmin service (between SafeKit cluster nodes)

• UDP - 8888 for the module heartbeat (between SafeKit cluster nodes)

• TCP - 5600 for the module real time file replication (between SafeKit nodes)

• TCP - 9010 for the load-balancer health check and the SafeKit web console in

HTTP

 SafeKit cluster in the cloud

39 A2 38MC 05 335

• TCP - 9453 for the SafeKit web console in HTTPS

• TCP - 9001 for configuring the SafeKit web console for HTTPS

The module’s port value depends on the module id (for details, see section

10.3.3.2).The previous values are the one for the first module installed on

the node.

16.2.2 Farm cluster in Azure

Most farm module features are operational in the Azure cloud (process death detection,

checkers), except the virtual IP address with load balancing . Anyway, you can set up a

SafeKit farm module on the cluster and use the load balancing provided by Azure (see

Load Balancer in Azure). An IP is associated with the load balancer that plays the role of

the virtual IP.

You must configure yourself the Azure load balancer and the network security group.

For the load balancer, you must:

• specify the rules for your application

• set the SafeKit cluster nodes as backend

• configure the probe. It tests whether the instance is in a healthy state or an

unhealthy state.

The load balancer routes traffic only to healthy instances. It resumes routing requests to

the instance when the instance has been restored to a healthy state.

SafeKit provides a probe for SafeKit modules. For this, configure the probe in the load

balancer with:

https://docs.microsoft.com/azure/load-balancer/

SafeKit User's Guide

336 39 A2 38MC 05

• HTTP protocol

• port 9010, the SafeKit web service port

• URL /var/modules/AM/ready.txt, where AM is the module name

In a farm module, the probe:

• returns OK, that means that the instance is healthy, when the farm module state

is UP (Ready)

• returns NOT FOUND, that means that the instance is out of service, in all other

states

The Azure network security group must be at least configured to enable communications

for the following protocols and ports:

• UDP - 4800 for the safeadmin service (between SafeKit cluster nodes)

• TCP - 9010 for the load-balancer health check and the SafeKit web console in

HTTP

• TCP - 9453 for the SafeKit web console in HTTPS

• TCP - 9001 for configuring the SafeKit web console for HTTPS

16.3 SafeKit cluster in Google GCP

In the following, we suppose that you are familiar with Google Cloud Platform (GCP) that

delivers virtual machines running in Google's innovative data centers and worldwide fiber

network. For more information about the features and use of Google Cloud Platform, see

the Google Cloud Computing documentation.

Before implementing a SafeKit module, the administrator must :

1. Create virtual machines (2 for a mirror module)

2. Make settings for Google Compute Engine (GCP), virtual machines, and SafeKit.

3. Then, apply specific settings for implementing your SafeKit module.

GCP settings

You must set GCP to:

• associate an external IP address (and optionally DNS name) to each virtual

machine instance if you want to administer them with the SafeKit web console

from the internet

• configure the firewall rules for the Virtual Private Cloud (VPC) network to enable

the communications of the SafeKit framework and the SafeKit web console. The

ports to open are described in section 10.3.3.2

• use a high-bandwidth, low-latency network if real-time replication is used in a

mirror module

Virtual machine settings

On each virtual machine, you must also:

https://cloud.google.com/compute/?hl=en

 SafeKit cluster in the cloud

39 A2 38MC 05 337

• install the SafeKit package

• apply the HTTPS configuration to secure the SafeKit web console (described in

section 11)

SafeKit settings

Finally, you must enter the SafeKit cluster configuration and apply it to all nodes (for

details on cluster configuration, see section 12. For example, the SafeKit cluster

configuration file would be:

<cluster>

<lans>

 <lan name="default">

 <node name=" Inst1" addr="10.132.0.4"/>

 <node name=" Inst2" addr="10.32.0.6"/>

 </lan>

</lans>

</cluster>

The default lan is used for SafeKit framework communications between cluster nodes.

16.3.1 Mirror cluster in GCP

Mirror module features are operational in the Google Cloud Platform (real-time file

replication, failover, process death detection, checkers, …) except the virtual IP address

failover. Anyway, you can set up a SafeKit mirror module on the cluster and use the load

balancing provided by GCP (see Load Balancer in GCP) and route request only to the

primary node. An IP is associated with the load balancer that plays the role of the virtual

IP.

You must configure yourself the Google load balancer and the network firewall.

https://cloud.google.com/load-balancing/docs/

SafeKit User's Guide

338 39 A2 38MC 05

For the load balancer, you must:

• specify the rules for your application

• set the SafeKit cluster nodes as backend

• configure the health check. It tests whether the instance is in a healthy state or

an unhealthy state.

The load balancer routes traffic only to healthy instances. It resumes routing requests to

the instance when the instance has been restored to a healthy state.

SafeKit provides a health check for SafeKit modules. For this, configure the health check

in the load balancer with:

• HTTP protocol

• port 9010, the SafeKit web service port

• URL /var/modules/AM/ready.txt, where AM is the module name

In a mirror module, the health check:

• returns OK, that means that the instance is healthy, when the module state

PRIM (Ready) or ALONE (Ready)

• returns NOT FOUND, that means that the instance is unhealthy, in all other

states

The network firewall must be at least configured to enable communications for the

following protocols and ports:

• UDP - 4800 for the safeadmin service (between SafeKit cluster nodes)

• UDP - 8888 for the module heartbeat (between SafeKit cluster nodes)

• TCP - 5600 for the module real time file replication (between SafeKit nodes)

• TCP - 9010 for the load-balancer health check and the SafeKit web console in

HTTP

• TCP - 9453 for the SafeKit web console in HTTPS

• TCP - 9001 for configuring the SafeKit web console for HTTPS

The module’s port value depends on the module id (for details, see section

10.3.3.2).The previous values are the one for the first module installed on

the node.

16.3.2 Farm cluster in GCP

Most farm module features are operational in the Google Cloud Platform (process death

detection, checkers), except the virtual IP address with load balancing . Anyway, you can

set up a SafeKit farm module on the cluster and use the load balancing provided by GCP

(see Load Balancer in GCP). An IP is associated with the load balancer that plays the role

of the virtual IP.

https://cloud.google.com/load-balancing/docs/

 SafeKit cluster in the cloud

39 A2 38MC 05 339

You must configure yourself the Google load balancer and the network firewall.

For the load balancer, you must:

• specify the rules for your application

• set the SafeKit cluster nodes as backend

• configure the health check. It tests whether the instance is in a healthy state or

an unhealthy state.

The load balancer routes traffic only to healthy instances. It resumes routing requests to

the instance when the instance has been restored to a healthy state.

SafeKit provides a health check for SafeKit modules. For this, configure the health check

in the load balancer with:

• HTTP protocol

• port 9010, the SafeKit web service port

• URL /var/modules/AM/ready.txt, where AM is the module name

In a farm module, the health check:

• returns OK, that means that the instance is healthy, when the farm module state

is UP (Ready)

• returns NOT FOUND, that means that the instance is out of service, in all other

states

SafeKit User's Guide

340 39 A2 38MC 05

The network firewall must be at least configured to enable communications for the

following protocols and ports:

• UDP - 4800 for the safeadmin service (between SafeKit cluster nodes)

• TCP - 9010 for the load-balancer health check and the SafeKit web console in

HTTP

• TCP - 9453 for the SafeKit web console in HTTPS

• TCP - 9001 for configuring the SafeKit web console for HTTPS

39 A2 38MC 05 341

17. Third-Party Software

SafeKit comes with the third-party software listed below.

For licenses details, refer to the links or the license files into the SAFE/licenses directory

(SAFE=/opt/safekit in Linux and SAFE=C:\safekit in Windows if

%SYSTEMDRIVE%=C:).

libnet Packet Construction and Injection

Libnet license - license

Used for arpreroute and ping

swagger-ui https://github.com/swagger-api/swagger-ui

Apache2 License - https://github.com/swagger-api/swagger-

ui/blob/master/LICENSE

Swagger UI is a collection of HTML, JavaScript, and CSS assets that

dynamically generate beautiful documentation from a Swagger-compliant

API

Used for to visualize the SafeKit API

Sqlite3 https://www.sqlite.org/about.html

Public Domain License - https://www.sqlite.org/copyright.html

SQLite is an in-process library that implements a self-contained,

serverless, zero-configuration, transactional SQL database engine

Used by SafeKit framework

Info-ZIP http://info-zip.org

BSD like license - http://infozip.sourceforge.net/license.html

Used to pack/unpack a .safe module

And on Windows OS only :

libxml http://xmlsoft.org

MIT license - http://www.xmlsoft.org/FAQ.html#License

Used by the SafeKit framework

libxslt http://xmlsoft.org/XSLT/

MIT license -

https://gitlab.gnome.org/GNOME/libxslt/blob/master/Copyright

Used by the SafeKit framework

Net-SNMP http://net-snmp.sourceforge.net

BSD like and BSD license - http://www.net-snmp.org/about/license.html

Used by SafeKit SNMP agent in Windows

HTTP server https://httpd.apache.org/

Apache license - https://www.apache.org/licenses/LICENSE-2.0

https://github.com/libnet/libnet/blob/master/LICENSE
https://github.com/libnet/libnet/blob/master/LICENSE
https://github.com/swagger-api/swagger-ui
https://github.com/swagger-api/swagger-ui/blob/master/LICENSE
https://github.com/swagger-api/swagger-ui/blob/master/LICENSE
https://www.sqlite.org/about.html
https://www.sqlite.org/copyright.html
http://info-zip.org/
http://infozip.sourceforge.net/license.html
http://xmlsoft.org/
http://www.xmlsoft.org/FAQ.html#License
http://xmlsoft.org/XSLT/
https://gitlab.gnome.org/GNOME/libxslt/blob/master/Copyright
http://net-snmp.sourceforge.net/
http://www.net-snmp.org/about/license.html
https://httpd.apache.org/
https://www.apache.org/licenses/LICENSE-2.0

SafeKit User's Guide

342 39 A2 38MC 05

Used by the SafeKit web service for the web console, the distributed

commands, and the module checker

APR https://apr.apache.org/

Apache license - https://www.apache.org/licenses/LICENSE-2.0

Used by the Apache HTTP server

PCRE http://www.pcre.org/

BSD license - https://www.pcre.org/licence.txt

Used by the Apache HTTP server

libexpat https://github.com/libexpat/libexpat

BSD license -

https://github.com/libexpat/libexpat/blob/master/expat/COPYING

Used by the Apache HTTP server

mod_auth_o

penidc

https://github.com/OpenIDC/mod_auth_openidc

Apache2 License -

https://github.com/OpenIDC/mod_auth_openidc/blob/master/LICENSE.

txt

mod_auth_openidc is an OpenID Certified™ authentication and

authorization module for the Apache 2.x HTTP server that implements

the OpenID Connect Relying Party

Used by the Apache HTTP server

cURL http://curl.haxx.se

Curl license - https://github.com/curl/curl/blob/master/docs/LICENSE-

MIXING.md

Used by the distributed commands and the module checker

OpenSSL http://www.openssl.org

dual OpenSSL and SSLeay license -

https://www.openssl.org/source/license.html

Used when securing the web console, the distributed commands, and the

module checker

Lua http://www.lua.org

MIT license - https://www.lua.org/license.html

Used by SafeKit framework and the web service

getopt.c BSD License. Used to parse command arguments

oncw32 SUN RPC License. Used to transport NFS rpc

SafeKit uses the following third-party packages for the SafeKit web console:

Angular https://angular.io

MIT License - https://github.com/angular/angular-cli/blob/main/LICENSE

https://apr.apache.org/
https://www.apache.org/licenses/LICENSE-2.0
http://www.pcre.org/
https://www.pcre.org/licence.txt
https://github.com/libexpat/libexpat
https://github.com/libexpat/libexpat/blob/master/expat/COPYING
https://github.com/OpenIDC/mod_auth_openidc
https://github.com/OpenIDC/mod_auth_openidc/blob/master/LICENSE.txt
https://github.com/OpenIDC/mod_auth_openidc/blob/master/LICENSE.txt
http://curl.haxx.se/
https://github.com/curl/curl/blob/master/docs/LICENSE-MIXING.md
https://github.com/curl/curl/blob/master/docs/LICENSE-MIXING.md
http://www.openssl.org/
https://www.openssl.org/source/license.html
http://www.lua.org/
https://www.lua.org/license.html
https://angular.io/
https://github.com/angular/angular-cli/blob/main/LICENSE

 Third-Party Software

39 A2 38MC 05 343

Angular is an application-design framework and development platform for

creating efficient and sophisticated single-section apps.

@angular/animations, @angular/cdk, @angular/common, @angular/core,

@angular/forms, @angular/material, @angular/material-moment-adapter,

@angular/platform-browser, @angular/router, @angular/service-worker

@babel/runtime

jszip https://stuk.github.io/jszip/

MIT OR GPL-3.0-or-later license -

https://github.com/Stuk/jszip/blob/main/LICENSE.markdown

A library for creating, reading, and editing .zip files with JavaScript, with a

lovely and simple API.

material-

icons

https://github.com/marella/material-icons

Apache-2.0 license - https://github.com/marella/material-

icons/blob/main/LICENSE

moment https://github.com/urish/angular-moment#readme

MIT license - https://github.com/urish/angular-moment?tab=MIT-1-ov-

file

ngx-logger https://github.com/dbfannin/ngx-logger#readme

MIT license - https://github.com/dbfannin/ngx-logger?tab=MIT-1-ov-file

NGX Logger is a simple logging module for angular

rxjs https://github.com/ReactiveX/rxjs

Apache2 License -

https://github.com/ReactiveX/rxjs/blob/master/LICENSE.txt

Reactive Extensions For JavaScript

tslib https://www.typescriptlang.org/

0BSD Copyright (c) Microsoft Corporation

Runtime library for typescript

vlq https://github.com/Rich-Harris/vlq/blob/master/README.md

MIT license - https://github.com/Rich-Harris/vlq/blob/master/LICENSE

Convert integers to a Base64-encoded VLQ string, and vice versa

zone.js https://github.com/angular/zone.js

MIT license - https://angular.io/license

Implements Zones for JavaScript

This list is available in file : safekit/web/htdcos/console/en/3rdpartylicenses.txt .

https://stuk.github.io/jszip/
https://github.com/Stuk/jszip/blob/main/LICENSE.markdown
https://github.com/marella/material-icons
https://github.com/marella/material-icons/blob/main/LICENSE
https://github.com/marella/material-icons/blob/main/LICENSE
https://github.com/urish/angular-moment#readme
https://github.com/urish/angular-moment?tab=MIT-1-ov-file
https://github.com/urish/angular-moment?tab=MIT-1-ov-file
https://github.com/dbfannin/ngx-logger#readme
https://github.com/dbfannin/ngx-logger?tab=MIT-1-ov-file
https://github.com/ReactiveX/rxjs
https://github.com/ReactiveX/rxjs/blob/master/LICENSE.txt
https://www.typescriptlang.org/
https://github.com/Rich-Harris/vlq/blob/master/README.md
https://github.com/Rich-Harris/vlq/blob/master/LICENSE
https://github.com/angular/zone.js
https://angular.io/license

SafeKit User's Guide

344 39 A2 38MC 05

39 A2 38MC 05 345

Log Messages Index

“Action …” messages

"Action forcestop called by admin@<IP>/SYSTEM/root", 121, 152

"Action prim called by admin@<IP>/SYSTEM/root",104, 152

"Action primforce called by SYSTEM/root", 111

"Action restart called by admin@<IP>/SYSTEM/root",80, 85, 121, 152

"Action restart|stopstart called by customscript", 97, 124, 152

"Action restart|stopstart called by errd", 91 , 124, 152

"Action restart|stopstart from failover rule tcp_failure", 92, 124, 152

"Action second called by admin@<IP>/SYSTEM/root", 104, 152

"Action shutdown called by SYSTEM", 82, 90, 152

"Action start called at boot time", 82, 82, 90

"Action start called automatically", 92, 97

"Action start called by admin@<IP>/SYSTEM/root", 79, 85, 121, 152

"Action stop called by admin@<IP>/SYSTEM/root", 79, 85, 121, 152

"Action stopstart called by failover-off", 108, 152

"Action stopstart called by modulecheck", 95, 152

"Action stopstart called by admin@<IP>/SYSTEM/root", 121, 152

"Action stopstart from failover rule customid_failure", 97, 124, 152

"Action wait from failover rule customid_failure", 96, 123

"Action wait from failover rule t_id", 92, 123

"Action wait from failover rule degraded_server", 107

"Action wait from failover rule interface_failure", 93, 123

"Action wait from failover rule module_failure", 95, 123

"Action wait from failover rule notuptodate_server", 106, 123

"Action wait from failover rule ping_failure", 94, 123

"Action wait from failover rule splitbrain_failure", 123

"Action alone called by heart : no heartbeat", 82

"Action alone called by heart : remote stop", 79, 82

File replication and reintegration messages

"Copied <reintegration statistics>", 81

"Data may be inconsistent for replicated directories (stopped during reintegration)", 111

"Data may not be uptodate for replicated directories (wait for the start of the remote

server)", 104, 106, 123

"If you are sure that this server has valid data, run safekit prim to force start as

primary", 104, 106, 123

SafeKit User's Guide

346 39 A2 38MC 05

"If you are sure that this server has valid data, run safekit primforce to force start as

primary", 111

"Reintegration ended (synchronize)", 81

"Updating directory tree from /replicated", 81

Load-balancing messages

"farm load: 128/256 (group FarmProto_0)" , 115, 87, 88

"farm membership: node1 (group FarmProto_0)", 87, 88

"farm membership: node1 node2 (group FarmProto_0)" , 115, 87, 88

"farm membership: node2 (group FarmProto_0)", 88

“Local state …” messages

"Local state ALONE Ready", 103, 79, 83

"Local state PRIM Ready", 103,79

"Local state SECOND Ready",103, 79

"Local state UP Ready",114 ,115

"Local state WAIT NotReady", 123, 108

“Remote state …” messages

"Remote state ALONE Ready", 103,83

"Remote state PRIM Ready", 103, 79

"Remote state SECOND Ready",103, 79

"Remote state UNKNOWN Unknown", 82, 83

“Resource …” messages

"Resource custom.id set to down by customscript", 96, 123, 124

"Resource custom.id set to up by customscript", 96

"Resource heartbeat.0 set to down by heart", 82, 83

"Resource heartbeat.flow set to down by heart", 82, 83

"Resource intf.ip.0 set to down by intfcheck", 93, 123

"Resource intf.ip.0 set to up by intfcheck", 93

"Resource module.othermodule_ip set to down by modulecheck", 95, 123

"Resource module.othermodule_ip set to up by modulecheck", 95

"Resource ping.id set to down by pingcheck", 94, 123

"Resource ping.id set to up by pingcheck", 94

"Resource rfs.degraded set to up by nfsadmin", 107

 Third-Party Software

39 A2 38MC 05 347

"Resource tcp.id set to down by tcpcheck", 92, 92, 123, 124

"Resource tcp.id set to up by tcpcheck", 92

“Script …” messages

"Script start_prim", 287, 79, 82, 82

"Script stop_prim", 287, 79, 82, 83

"Script start_both", 287, 85, 90

"Script stop_both", 287, 85

“Transition …” messages

"Transition RESTART|STOPSTART from failover rule customid_failure", 97

"Transition STOPSTART from failover-off", 108

"Transition SWAP from defaultprim", 110

"Transition WAIT_TR from failover rule customid_failure", 96

"Transition WAIT_TR from failover rule interface_failure", 93

"Action wakeup from failover rule Implicit_wakeup", 92, 93, 94, 95, 96

Other messages

"Process appli.exe not running", "Service mySQL not running", 91, 124

"Failover-off configured", 108

"Requested prim start aborted ", 111

"Split brain recovery: exiting alone", 83

"Split brain recovery: staying alone", 83

"Action stop called by maxloop", 125, 91, 92, 93, 94, 95, 96, 97, 124

"Virtual IP <ip 1.10 of mirror> set", 80

"Virtual IP <ip1.20 of farm> set", 85

SafeKit User's Guide

348 39 A2 38MC 05

 Third-Party Software

39 A2 38MC 05 349

Index

Architectures

mirror, farm… - 17

cloud - 329

Installation

install, upgrade… - 31

Console

configuration, monitoring- 43

securing (https, …) - 187

Advanced Configuration

cluster.xml - 213

userconfig.xml - 219

module scripts - 287

examples - 295

Administration

mirror - 101

farm - 113

advanced - 163

command line - 147

Support

tests - 75

troubleshooting - 117

call desk - 139

log messages - 345

Other

table of contents - 5

third-party software - 341

SafeKit User's Guide

350 39 A2 38MC 05

